期刊文献+

Effects of the trimodal random field on the magnetic properties of a spin-1 Ising nanotube

Effects of the trimodal random field on the magnetic properties of a spin-1 Ising nanotube
下载PDF
导出
摘要 In this work, the hysteresis behavior of a nanotube, consisting of a ferromagnetic core of spin-1 atoms surrounded by a ferromagnetic shell of spin-1 atoms with ferro-or anti-ferromagnetic interracial coupling is studied in the presence of a random magnetic field. Based on a probability distribution method, the effective-field theory has been used to investigate the effects of the random magnetic field, the interfacial coupling constant, and the temperature on the hysteresis loops of the nanotube. Some characteristic behaviors have been found, such as the existence of double or triple hysteresis loops for appropriate values of the system parameters. The remanent magnetization and the coercive field, as functions of the temperature, are examined. In this work, the hysteresis behavior of a nanotube, consisting of a ferromagnetic core of spin-1 atoms surrounded by a ferromagnetic shell of spin-1 atoms with ferro-or anti-ferromagnetic interracial coupling is studied in the presence of a random magnetic field. Based on a probability distribution method, the effective-field theory has been used to investigate the effects of the random magnetic field, the interfacial coupling constant, and the temperature on the hysteresis loops of the nanotube. Some characteristic behaviors have been found, such as the existence of double or triple hysteresis loops for appropriate values of the system parameters. The remanent magnetization and the coercive field, as functions of the temperature, are examined.
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第11期445-452,共8页 中国物理B(英文版)
基金 Project supported by URAC:08,the project RS:02(CNRST) the Swedish Research Links programme dnr-348-2011-7264
关键词 effective-field theory NANOTUBE critical phenomena effective-field theory, nanotube, critical phenomena
  • 相关文献

参考文献49

  • 1Kodama R H, Berkowitz A E, McNiff E J and Foner J S 1996 Phys. Rev. Lett. 77 394.
  • 2Hayashi T, Hirono S, Tomita M and Umemura S 1996 Nature 381 772.
  • 3Kim J, Park S, Lee J E, Jin S M, Lee J H, Lee I S, Yang I, Kim J S, Kim S K, Cho M H and Hyeon T 2006 Angew. Chem. Int. Ed. 45 7754.
  • 4Nie S and Emory S R 1997 Science 275 1102.
  • 5Rosensweig R E 1997 Ferrohydrodynamics (New York: Dover).
  • 6EUiott D W and Zhang W X 2001 Environ. Sci. Technol. 35 4922.
  • 7Lu A H, Schmidt W, Matoussevitch N, Btinnemann H, Spliethoff B, Tesche B, Bill E, Kiefer W and SchiJth F 2004 Nanoengineering of a Magnetically Separable Hydrogenation Catalyst (Angewandte Chemie International Edition in English) 43 4303.
  • 8Wong A P Y and Chan M H W 1990 Phys. Rev. Lett. 65 2567.
  • 9Michael F, Gonzalez C, Mujica V, Marquez M and Ratner M A 2007 Phys. Rev. B 76 224409.
  • 10Kaneyoshi T 2012 Phys. Lett. A 376 2352.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部