期刊文献+

基于知识库的骨支架可控分形设计 被引量:3

Effectively Applying Database and Fractals to Bionic Design of Artificial Bone Scaffold
下载PDF
导出
摘要 骨支架微观结构知识表达的欠缺,制约了可靠的人工骨支架仿生设计的科学依据和准则,间接影响骨支架仿生制造的研究和进展。基于Hausdorff分形几何理论,按照分形维数建立骨骼微孔形态分形维数知识规则,并根据分`形维数与孔隙率关系模型建立了二维平面骨支架孔隙率知识规则。系统地建立了从骨骼微观形态到人体骨微孔支架仿生设计的知识库设计方法。在分形维数与孔隙率双耦合因素作用下系统分析了孔隙率、孔填充数量与孔分形维数之间的关系,并分析和研究了微孔的分形维数和数量对填充之后的二维结构图的分形维数和孔隙率的影响。结果表明基于知识库的人工骨支架可控分形理论可以根据个体差异仿生设计骨支架微观结构特征,能够有效地为仿生制造提供驱动模型。 The lack of knowledge representation for the microstructure of the bone scaffold restricts the reliable bionic design of artificial bone scaffold and restricts its guidelines methodology. Therefore, it limits the research and progress of bone scaffold bionic manufacturing. Based on the Hausdorff fractal geometry theory, we built the knowl- edge rule of bones microscopic pores shape fractal dimension according to the fractal dimension calculation results. And it established the knowledge rule of bone scaffold porosity in accordance with fractal dimension and with the porosity of the relational model. It systematically set up a bionic design methodology based on the relationship be- tween bone micromorphology and human bone microscopic porous design. Doing suitable analyses, we demonstrated the relationship among the porosity, the number of filled pores, and the fractal dimension of the pattern of these pores. For individual differences in the microstructure of the bone scaffold properties, the calculated results show that, compared with other scaffold design methodology, our artificial bone scaffold bionic design based on controlla- ble fractal theory and knowledge database is indeed effective.
出处 《西北工业大学学报》 EI CAS CSCD 北大核心 2013年第5期779-784,共6页 Journal of Northwestern Polytechnical University
基金 国家自然科学基金(51175432 50905147) 陕西省自然科学基金(2011JQ7005) 中国博士后科学研究基金(200902606 2008044193) 西北工业大学新人新方向(10GH0133) 西北工业大学基础研究基金(JC20100230)资助
关键词 人工骨支架 分形维数 微观结构 孔隙率 bone, calculations, design, fractal dimension, agement, microstructure, porosity, schematic image analysis, image classification, knowledge man- diagrams artificial bone scaffold, bionic design
  • 相关文献

参考文献8

二级参考文献86

共引文献238

同被引文献30

  • 1Xia W B, He S L, Xu L, et al. Rapidly increasing rates of hip fracture in Beijing, China. J Bone Miner Res, 2012, 27 125 129.
  • 2Leung F, Blauth M, Bavonratanavech S. Surgery for fragility hip fracture-streamlining the process. Osteoporos Int 2010. 21:519 521.
  • 3Marsh J L, Weigel D P, Dirschl D R. Tibial plafond fractures how do these ankles function over time. J Bone Joint Surg Am, 2003, 85:287-295.
  • 4Tsai M D, Hsieh M S. Volume manipulations for simulating bone and joint surgery. IEEE Trans Inf Technol Biomed, 2005, 9:139 149.
  • 5Protopappas V C, Vawa M G, Fotiadis D I, et al. Ultrasonic monitoring of bone fracture healing. IEEE Trans Ultrason Ferroelectr Freq Control: 2008: 55:1243-1255.
  • 6Liu B, Luo X J, Huang R, et al. Virtual plate pre-bending for the long bone fracture based on axis pre-alignment. Comput Med Imag Graph, 2014, 38:233-244.
  • 7张晔.我国首次将3D打印成功用于足踝手术.科技日报,2014年7月20日.
  • 8Boskey A L. Mineralization, structure and function of bone. Dynam Bone Cartilage Metab, 2006, 43:201-212.
  • 9袁华,陶震江,邢树忠,等.计算机辅助正颌手术诊断分析及手术模拟的临床应用.第六次中国国际暨第九次全国口腔颌面外科学术会议,南京,2012.452.
  • 10Kikuchi M, Itoh S: Ichinose S, et al. Self-organization mechanism in a bone-like hydroxyapatite/collagen nanocomposite synthesized in vitro and its biological reaction in vivo. Biomaterials, 2001, 22:1705-1710.

引证文献3

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部