期刊文献+

荷控忆阻器等效电路分析模型及其电路特性研究 被引量:15

Equivalent circuit analysis model of charge-controlled memristor and its circuit characteristics
原文传递
导出
摘要 忆阻器是物理上新实现的具有记忆特性的基本二端电路元件.根据-q关系式的泰勒级数形式构建了荷控忆阻器等效电路分析模型,以三次非线性荷控忆阻器模型为例,对不同参数条件下的荷控忆阻器进行了伏安关系、有无源性等电路特性的理论分析.结果表明:荷控忆阻器的伏安关系具有斜体"8"字形紧磁滞回线特性,随其参数符号的不同,荷控忆阻器呈现出无源性和有源性,导致其电路特性发生相应的变化;相比无源荷控忆阻器,有源荷控忆阻器更适用于作为二次谐波信号产生电路使用.制作了荷控忆阻器特性分析等效电路的实验电路,实验测量结果很好地验证了理论分析结果. Memristor realized physically is recently a basic two-terminal circuit element with memory property. Based on Taylor series form of ~ - q relationship, a charge-controlled memristor equivalent circuit analysis model is built. A charge-controlled memristor model with cubic nonlinearity is taken, as an example, to make a theoretical analysis of circuit characteristics, such as voltage-current relationship, active-passive property, and so on, of the charge-controlled memristor with different parameters. Results indicate that the voltage-current relationship of the charge-controlled memristor has an italic "8" shaped hysteresis loop characteristic, and the charge- controlled memristor shows passivity and activity accompanied with the variations of parameter symbols, resulting in the occurrence of the corresponding variations of circuit characteristics; compared with the passive memristor, the active memristor is more suitable for use as a second harmonic signal generation circuit. An experiment circuit is built based on the equivalent circuit of the charge- controlled memristor characteristic analysis, and the experimental results well verify the theoretical analysis.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2013年第21期396-403,共8页 Acta Physica Sinica
基金 国家自然科学基金(批准号:51277017) 江苏省自然科学基金(批准号:BK2012583)资助的课题~~
关键词 荷控忆阻器 等效电路 伏安关系 电路特性 charge-controlled memristor, equivalent circuit, voltage-current relationship, circuit characteristics
  • 相关文献

参考文献24

  • 1Chua L O 1971 IEEE Trans.Circuit Theory CT-18 507.
  • 2Chua L O 1976 Proc.IEEE 64 209.
  • 3Strukov D B,Snider G S,Stewart D R,Williams R S.2008.Nature 453 80.
  • 4Wang X B,Chen Y R,Xi H W,Li H,Dimitrov D.2009.IEEE Electron Device Lett.30 294.
  • 5Pershin Y V,Di Ventra M.2011.Adv.Phys.60 145.
  • 6Bao B C,Feng F,Dong W,Pan S H.2013.Chin.Phys.B 22 068401.
  • 7Joglekar Y N,Wolf S J.2009.Euro.J.Phys.30 661.
  • 8Riaza.2010.IEEE Trans.Circuits Syst.II: Exp.Briefs 57 223.
  • 9Bao B C,Shi G D,Xu J P,Liu Z,Pan S H.2011.Sci China Ser.E-Tech.Sci.54 2180.
  • 10包伯成,胡文,许建平,刘中,邹凌.2011.物理学报 60 120502.

同被引文献80

  • 1段俊生.含Caputo分数阶导数的分数阶微分方程[J].天津轻工业学院学报,2003,18(B12):21-24. 被引量:5
  • 2Matsumoto T.A Chaotic Attractor from Chua's Circuit[J].I- EEE Transactions on Circuits and Systems, 1984,CAS-31 (12):1055-1058.
  • 3Chua L O.Memristor-The Missing Circuit Element[J].IE- EE Transactions on Circuit Theory, 1971,18(5):507-519.
  • 4Strukov D B,Snider G S,Stewart D R,et al.The missing m- emristor found[J],Nature,2008,453(7191):80-83.
  • 5Itoth M,Chua L O.Memristor oscillators[J].International J-oumal of Bifurcations and Chaos,2008,18 (11):3183-3206.
  • 6Antonio C Torrezan,John Paul Strachan,Gilberto Medeiros-Ribeiro,R Stanley Williams.Sub-nanosecond switching of a tantalum oxide memristor[J].Nanotechnology.2011(48)
  • 7Yogesh N Joglekar,Stephen J Wolf.The elusive memristor: properties of basic electrical circuits[J].European Journal of Physics.2009(4)
  • 8Chua L O. Memristor-The Missing Circuit Element [J]. IEEE Transaction on Circuit Theory (SO018-9324), 1971, 18(5): 507-519.
  • 9Strukov D B, Snider G S, Stewart G R, et al. The missing memristor found [J]. Nature (S0028-0836), 2008, 453: 80-83.
  • 10Biolek Z, Biolek D, Biolkva V. SPICE model of memristor with nonlinear dopant drift [J]. Radio engineering (S0013-5194), 2009, 18(2): 210-214.

引证文献15

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部