期刊文献+

1eV吸收带边GaInAs/GaNAs超晶格太阳能电池的阱层设计 被引量:4

Well layer design for 1eV absorption band edge of GaInAs/GaNAs super-lattice solar cell
原文传递
导出
摘要 使用In,N分离的GaInAs/GaNAs超晶格作为有源区是实现高质量1eV带隙GaInNAs基太阳能电池的重要方案之一.为在实验上生长出高质量相应吸收带边的超晶格结构,本文采用计算超晶格电子态常用的Kronig-Penney模型比较了不同阱层材料选择下,吸收带边为1 eV的GaInAs/GaNAs超晶格相关参数的对应关系以及超晶格应变状态.结果表明:GaNAs与GaInAs作为超晶格阱层材料在实现1 eV的吸收带边时具有不同的考虑和要求;在固定1 eV的吸收带边时,GaNAs材料作为阱层可获得较好的超晶格应变补偿,将有利于生长高质量且充分吸收的太阳能电池有源区. The GalnAs/GaNAs super-lattice with a feature of space separation of In and N constituents as an active region, is one of the most important ways to achieve 1 eV GalnNAs-based solar cells. To experimentally realize the high-quality super-lattice structure with the required band-gap, Kronig-Penney model is used to obtain the barrier thickness dependence on the well thickness and its composition. Meanwhile, the strain state of GalnAs/GaNAs SLs with various well choices is also discussed. Results show that when both the GaNAs and GalnAs act as the well layers the super-lattice can achieve 1 eV band-gap, and when the GaNo.04Aso.96 is considered to act as the well layer, the entire GalnAs/GaNAs SLs have smaller strain accumulations as compared with the case of Gao.7Ino.aAs as the well layer in the super-lattice structure.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2013年第21期499-503,共5页 Acta Physica Sinica
基金 国家自然科学基金(批准号:61274134) 苏州市国际合作项目(批准号:SH201215)资助的课题~~
关键词 GaInAs/GaNAs超晶格 KRONIG-PENNEY模型 太阳能电池 GalnAs/GaNAs super-lattice, Kronig-Penney model, solar cell
  • 相关文献

参考文献17

  • 1Kondow M,Uomi K,Niwa A,Kitatani T,Watahiki S,Yazawa Y 1996 Jpn.J.Appl.Phys.35 1273.
  • 2Kurtz S R,Myers D,Olson J M.1997.Proceedings of the 26th IEEE Photovoltaic Specialists Conference,Anaheim,29 Sep-3 Oct 1997,p 875.
  • 3赵杰,曾一平.新型高效太阳能电池研究进展[J].物理,2011,40(4):233-240. 被引量:13
  • 4Kong X,Trampert A,Tournie E,Ploog K H.2006.Appl.Phys.Lett.87 171901.
  • 5Oshima R,Huang J,Miyashita N,Matsubara K,Okada Y,Ponce F.2011.Appl.Phys.Lett.99 191907.
  • 6Miyamoto T,Sato S,Pan Z,Schlenker D,Koyama F,Iga K 1998 J.Cryst Growth.195 421.
  • 7Hong Y G,Tu C W,Ahrenkiel R K.2001.J Cryst Growth.227-228 536.
  • 8Hong Y G,Egorov A Y,Tu C W.2002.J.Vac.Sci.Technol B 20 1163.
  • 9Wu P H,Su Y K,Yen C T,Hong H F,Chu K Y,Chen Y R.2007.Semicond Sci.Tech.22 549.
  • 10Wu P H,Su Y K,Chen I L,Chiou C H,Hsu J T,Chen W R.2006.Jpn.J.Appl.Phys.45 L647.

二级参考文献10

  • 1Martin A G. Prog Photovolt:Res.Appl . 2001
  • 2Kurtz Sarah,Myers Daryl,Mc Mahon WEet al. Prog.Pho-tovolt:Res.Appl . 2008
  • 3Alexis De Vos. Journal of Physics D Applied Physics . 1980
  • 4Martin A G,Keith E,Yoshihiro Het al. Prog.Photovolt:Res.Appl . 2010
  • 5King R R,Boca A,Hong Wet al.Band-gap-engineered archi-tectures for high-efficiency multijunction concentrator solar cells[].Theth European Photovoltaic Solar Energy Con-ference and Exhibition.2009
  • 6Geisz J,Kurtz S,Wanlass M Wet al. Applied Physics Letters . 2007
  • 7Geisz J F,Friedman DJ,Ward J Set al. Applied Physics Letters . 2008
  • 8Wojtczuk S,Chiu P,Zhang Xet al.InGaP/GaAs/InGaAs41%concentrator cells using Bi-facial epigrowth[].th IEEE PVSC.2010
  • 9Wang S,Liu X,Ding Det al.Lattice-matched ZnTe and CdZnTe/ZnTe heterostructures grown on GaSb for multi-junction solar cell applications[].rd IEEE Photovoltaic Specialists Conference.2008
  • 10Wang S,Ding D,Scott Ret al.CdSe/ZnTe heterojunction solar cells grown on GaSb[].th IEEE Photovoltaic Spe-cialists Conference.2009

共引文献12

同被引文献31

  • 1Friedman D J, Kurtz S R, Bertness K A, Kibbler A E, Kramer C, Olson J M, King D L, Hansen B R, Snyder J K 1995 Prog Photovolt. 3 47.
  • 2Yamaguchi M 2003 Sol. Energy Mater. Sol. Cells 75 261.
  • 3Dimroth F, Beckert R, Meusel M, Schubert U, Bett A W 2001 Prog. Photovolt. 9 165.
  • 4Wang J Z, Huang Q L, Xu X, Quan B G, Luo J H, Zhang Y, Ye J S, Li D M, Meng Q B, Yang G Z 2015 Chin. Phys. B 24 054201.
  • 5Yang J, Zhao D G, Jiang D S, Liu Z S, Chen P, Li L, Wu L L, Le L C, Li X J, He Xiao-G, Wang H, Zhu J J, Zhang S M, Zhang B S, Yang H 2014 Chin. Phys. B 23 068801.
  • 6Green M A, Emery K, Hishikawa Y, Warta W 2013 Prog. Photovolt: Res. Appl. 21 827.
  • 7Marti A, Araujo G L 1996 Sol. Energy Mater. Sol. Cells 43 203.
  • 8Shockley W, Queisser H 1961 J. Appl. Phys. 32 510.
  • 9Law D C, King R R, Yoon H, Archer M J, Boca A, Fetzer C M, Mesropian S, Isshiki T, Haddad M, Edmondson K M, Bhusari D, Yena J, Sherif R A, Atwater H A, Karama N H 2010 Sol. Energy Mater. Sol. Cells 94 1314.
  • 10Dimroth F, Grave M, Beutel P, Fiedeler U, Karcher C, Tibbits N T D, Oliva E, Siefer G, Schachtner M, Wekkeli A, Bett A W, Krause R, Piccin M, Blanc N, Drazek C, Guiot E, Ghyselen B, Salvetat T, Tauzin A, Signamarcheix T, Dobrich A, Hannappel T, Schwarzburg K 2014 Prog. Photovolt: Res. Appl. 22 277.

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部