期刊文献+

基于改进灰色模型的建筑能耗预测研究 被引量:12

Study on building energy consumption prediction based on the improved grey model
原文传递
导出
摘要 针对公共建筑逐月能耗呈现周期性震荡的特点,提出一种基于改进灰色模型的建筑能耗预测方法.在传统灰色模型(grey model,GM)的基础上,对建筑能耗的历史数据进行三角变换法处理,较好地解决了震荡序列的模拟和预测;引入弱化缓冲算子改善原始数据序列变化率较大时TGM模型的预测效果.将弱化TGM预测模型应用于各类建筑物的能耗预测,取得较为满意的结果. Aimed at the public building with the characteristic of oscillations of the monthly building en- ergy consumption, this paper presents a predictive method of building energy consumption based on an improved GM method. On the basis of the traditional GM model, the trigonometric transformation on the historical data of building energy consumption well carries out to model and predicts the shock se- quences. The introduction of the weakening buffer operator improves the effect of prediction on TGM model when the presence of large fluctuations in original data sequences. The weakening TGM model is applied to predict the energy consumption of various types of buildings and the results are satisfactory.
出处 《福州大学学报(自然科学版)》 CAS CSCD 北大核心 2013年第5期903-908,共6页 Journal of Fuzhou University(Natural Science Edition)
基金 国家自然科学基金资助项目(60804027)
关键词 建筑能耗 预测 灰色模型 三角函数变换 弱化缓冲算子 building energy consumption prediction grey model trigonometric transform weakening buffer operator
  • 相关文献

参考文献16

  • 1Sinor R, Westphal F S, Lamberts R. Regression analysis of electric energy consumption and architectural variables of condi- tioned commercial buildings in 14 Brazilian cities [ C ]// Seventh International IBPSA Conference. Rio de Janeiro: [ s. n. ], 2001 : 1 373 - 1 379.
  • 2谢艳群,李念平,陈淑琴,孙凤梅,倪吉,周慧.长沙市居住建筑能耗调查及偏相关分析[J].煤气与热力,2007,27(5):85-88. 被引量:22
  • 3严智勇,许巧玲.福州地区大型办公建筑能耗的多元线性回归分析[J].能源与环境,2009(1):51-52. 被引量:10
  • 4许巧玲,陈晓彦,赵超,黄云云.基于多元统计方法的酒店建筑能耗分析研究[J].福州大学学报(自然科学版),2011,39(2):249-253. 被引量:11
  • 5Kreider J F, Wang X A. Artificial neural networks demonstration for automated generation of energy use predictors for commer- cial build - ings [ J ]. ASHRAE Transactions, 1991, 97 (2) : 775 - 779.
  • 6Kawashima M, Dorgan C E, Mitchell J W. 3489 hourly thermal load prediction for the next 24 hours by ARIMA, EWMA, LR, and an artificialneural network[J]. ASHRAE Trans, 1995, 101 (1) : 186 -200.
  • 7Karatasou S, Santamouris M, Geros V. Modeling and predicting build - ing' s energy use with artificial neural networks : meth-ods and results[J]. Energy and Buildings, 2006(38) : 949 -958.
  • 8Ferrano F J. Prediction of thermal storage loads using a neural networks [ J]. ASHRAE Trans, 1990, 96 (2) : 723 -726.
  • 9王四清,王先民,李元旦,杨昌智.系统负荷的灰色区间预测[J].系统工程,1999,17(3):60-65. 被引量:17
  • 10Deng Ju -long. The grey exponetial law of AGO grey system[ M]. Beijing: China Ocean Press, 1988.

二级参考文献51

共引文献231

同被引文献99

引证文献12

二级引证文献51

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部