期刊文献+

共振条件下扰动等时哈密顿系统周期解的多解性

INFINITY OF PERIODIC SOLUTIONS OF PERTURBED ISOCHRONOUS HAMILTONIAN SYSTEMS
下载PDF
导出
摘要 运用拓扑度方法,给出了扰动等时哈密顿系统Jz′=▽H(z)+f(z)+p(t)周期解的多解性. A new result, by means of the topological degree approach, is given for infinity of periodicsolutions of perturbed isochronous Hamiltonian system Jz′=△H(z)+f(z)+p(t)
作者 马田田
出处 《北京师范大学学报(自然科学版)》 CAS CSCD 北大核心 2013年第5期443-444,共2页 Journal of Beijing Normal University(Natural Science)
基金 中国博士后基金资助项目(2012M510341) 北京市自然科学基金资助项目(1112006)
关键词 扰动等时哈密顿系统 共振 周期解 拓扑度 perturbed isochronous Hamiltonian system resonance periodic solution topological degree
  • 相关文献

参考文献12

  • 1Dancer N. Boundary value problem for weakly nonlinear ordinary differential equations[J]. Bull Austral MathSoc, 1976, 15..321.
  • 2Fabry C, Fonda A. Nonlinear resonance in asymmetric oscillators [J]. J Differential Equations, 1998, 147:58.
  • 3Fabry C, Mawhin J. Oscillations of a forced asymmetric oscillators at resonance [J]. Nonlinearity, 2000, 13..493.
  • 4Bonheure D, Fabry C. Unbounded solutions of forced isochronous oscillator at resonance [ J ]. Differential Integral Equations, 2002, 15 : 1139.
  • 5Bonheure D, Fabry C, Smets D. Periodic solutions of forced isochronous oscillator at resonance [J]. Discrete Contin Dynam Systems, 2002, 8:907.
  • 6Capietto A, Dambrosio W, Wang Z. Coexistence of unbounded and periodic solutions to perturbed damped isochronous oscillators at resonance [J]. Proc Edinburgh Math Soe, 2008,138A.. 15.
  • 7Capietto A, Wang Z. Periodic solutions of Lifnard equations with asymmetric nonlinearities at resonance [J]. J London Math Soe, 2003, 68..119.
  • 8Fonda A. Topological degree and generalized asymmetric oscillators [J]. Topol Meth Nonlinear Anal, 2006, 28.. 171.
  • 9Wang Z. Periodic solutions of the second order differential equations with asymmetric nonlinearities depending on the derivatives [J]. Discrete Contin Dynam Systems, 2003, 9:751.
  • 10Fonda A. Positively homogeneous Hamiltonian systems in the plan [J] J Differential Equations, 2004, 200:162.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部