期刊文献+

Springback prediction of thick-walled high-strength titanium tube bending 被引量:15

Springback prediction of thick-walled high-strength titanium tube bending
原文传递
导出
摘要 Significant springback occurs after tube rotary-draw-bending (RDB), especially for a high-strength Ti-3A1-2.5V tube (HSTT) due to its high ratio of yield strength to Young's modulus. The combination scheme of explicit and implicit is preferred to predict the springback. This simulation strategy includes several numerical parameters, such as element type, number of elements through thickness (NEL), element size, etc. However, the influences of these parameters on spring- back prediction accuracy are not fully understood. Thus, taking the geometrical specification 9.525 mm × 0.508 mm ofa HSTT as the objective, the effects of numerical parameters on prediction accuracy and computation efficiency of springback simulation of HSTT RDB are investigated. The simulated springback results are compared with experimental ones. The main results are: (1) solid and continuum-shell elements predict the experimental results well; (2) for C3DSR elements, NEL of at least 3 is required to obtain reliable results and a relative error of 29% can occur as NEL is varied in the range of 1-3; (3) specifying damping factor typically works well in Abaqus/Emplicit simulation of springback and the springback results are sensitive to the magnitude of damping factor. In addition, the explanations of the effect rules are given and a guideline is added. Significant springback occurs after tube rotary-draw-bending (RDB), especially for a high-strength Ti-3A1-2.5V tube (HSTT) due to its high ratio of yield strength to Young's modulus. The combination scheme of explicit and implicit is preferred to predict the springback. This simulation strategy includes several numerical parameters, such as element type, number of elements through thickness (NEL), element size, etc. However, the influences of these parameters on spring- back prediction accuracy are not fully understood. Thus, taking the geometrical specification 9.525 mm × 0.508 mm ofa HSTT as the objective, the effects of numerical parameters on prediction accuracy and computation efficiency of springback simulation of HSTT RDB are investigated. The simulated springback results are compared with experimental ones. The main results are: (1) solid and continuum-shell elements predict the experimental results well; (2) for C3DSR elements, NEL of at least 3 is required to obtain reliable results and a relative error of 29% can occur as NEL is varied in the range of 1-3; (3) specifying damping factor typically works well in Abaqus/Emplicit simulation of springback and the springback results are sensitive to the magnitude of damping factor. In addition, the explanations of the effect rules are given and a guideline is added.
出处 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2013年第5期1336-1345,共10页 中国航空学报(英文版)
基金 the National Natural Science Foundation of China (No.51275415) Program for New Century Excellent Talents in University the fund of the State Key Laboratory of Solidifcation Processing in NWPU Natural Science Basic Research Plan in Shaanxi Province (No.2011JQ6004),and the 111 Project (No.B08040) for the support
关键词 BENDING Finite element method High strength Numerical parameters Solid elements SPRINGBACK Titanium alloys Tube Bending Finite element method High strength Numerical parameters Solid elements Springback Titanium alloys Tube
  • 相关文献

参考文献3

二级参考文献36

共引文献111

同被引文献152

引证文献15

二级引证文献50

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部