期刊文献+

Spatial and seasonal variability of CO_2 flux at the air-water interface of the Three Gorges Reservoir 被引量:8

Spatial and seasonal variability of CO_2 flux at the air-water interface of the Three Gorges Reservoir
原文传递
导出
摘要 Diffusive carbon dioxide (CO2) emissions from the water surface of the Three Gorges Reservoir, currently the largest hydroelectric reservoir in the world, were measured using floating static chambers over the course of a yearlong survey. The results showed that the average,annual CO2 flux was (163.3 ± 117.4) mg CO2/(m^2.hr) at the reservoir surface, which was larger than the CO2 flux in most boreal and temperate reservoirs but lower than that in tropical reservoirs. Significant spatial variations in CO2 flux were observed at four measured sites, with the largest flux measured at Wushan (221.9 mg CO2/(m^2.hr)) and the smallest flux measured at Zigui (88.6 mg CO2/(m^2.hr)); these differences were probably related to the average water velocities at different sites. Seasonal variations in CO2 flux were also observed at four sites, starting to increase in January, continuously rising until peaking in the summer (June-August) and gradually decreasing thereafter. Seasonal variations in CO2 flux could reflect seasonal dynamics in pH, water velocity, and temperature. Since the spatial and temporal variations in CO2 flux were significant and dependent on multiple physical, chemical, and hydrological factors, it is suggested that long-term measurements should be made on a large spatial scale to assess the climatic influence of hydropower in China, as well as the rest of the world. Diffusive carbon dioxide (CO2) emissions from the water surface of the Three Gorges Reservoir, currently the largest hydroelectric reservoir in the world, were measured using floating static chambers over the course of a yearlong survey. The results showed that the average,annual CO2 flux was (163.3 ± 117.4) mg CO2/(m^2.hr) at the reservoir surface, which was larger than the CO2 flux in most boreal and temperate reservoirs but lower than that in tropical reservoirs. Significant spatial variations in CO2 flux were observed at four measured sites, with the largest flux measured at Wushan (221.9 mg CO2/(m^2.hr)) and the smallest flux measured at Zigui (88.6 mg CO2/(m^2.hr)); these differences were probably related to the average water velocities at different sites. Seasonal variations in CO2 flux were also observed at four sites, starting to increase in January, continuously rising until peaking in the summer (June-August) and gradually decreasing thereafter. Seasonal variations in CO2 flux could reflect seasonal dynamics in pH, water velocity, and temperature. Since the spatial and temporal variations in CO2 flux were significant and dependent on multiple physical, chemical, and hydrological factors, it is suggested that long-term measurements should be made on a large spatial scale to assess the climatic influence of hydropower in China, as well as the rest of the world.
出处 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2013年第11期2229-2238,共10页 环境科学学报(英文版)
基金 supported by the National Natural Science Foundation of China(No.50809067,41303065) the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDA05060102,XDA05050602) the Project of Zhejiang Key Scientific and Technological Innovation Team(No.2010R50039) the Project of Zhejiang Scientific and Technological Plan(No.2011F20025)
关键词 CO2 emission spatial variation seasonal variation water velocity TEMPERATURE PH CO2 emission spatial variation seasonal variation water velocity temperature pH
  • 相关文献

参考文献10

二级参考文献121

共引文献138

同被引文献68

引证文献8

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部