期刊文献+

基于用户阅读行为的图书自动评测算法 被引量:2

User behavior based automatic book rating algorithm
下载PDF
导出
摘要 针对图书质量较难量化的问题,以用户在阅读过程中的流失和留存数据为基础,对各个关键行为节点设置评测权重,通过用户阅读图书的深度来量化图书质量.在分析在线阅读平台特点的基础上,根据用户阅读图书深度到达的难度来量化用户的阅读行为,提出基于用户阅读行为的图书自动评测算法.图书的最终综合评测值考虑图书半衰期和用户分群对图书评分的影响,能够根据图书的多个评测指标对图书进行自动评测,帮助用户选择更符合自身喜好的图书,提高用户满意度和用户体验. In order to tackle with the difficulty of book quality quantification, evaluation weight was set for each critical behavior node based on user's churn/retention data in the reading process, and an automatic book rating method was presented based on users' reading behavior. User segmentation was considered due to the difference of users' behavior before and after the half-life of books. The daily score of each book was used to fine-tune the comprehensive score of books in order to differentiate the preference of user segmentations. The effectiveness of the algorithm was tested on a mobile reading platform which has tens of millions of readers. Results show that multiple indexes can automatically model the quality of books and help the users to find the book they like.
出处 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2013年第10期1753-1757,共5页 Journal of Zhejiang University:Engineering Science
基金 浙江省社科规划课题资助项目(12JCGL05YB)
关键词 手机阅读 关键行为节点 图书半衰期 图书评分 mobile reading key reading points book halfqife time book rating
  • 相关文献

参考文献7

  • 1GEDIMINAS A, ALEXANDER T. Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions [J ]. IEEE Transactions on Knowledge and Data Engineering, 2005, 17(6) : 734 - 749.
  • 2邓爱林,朱扬勇,施伯乐.基于项目评分预测的协同过滤推荐算法[J].软件学报,2003,14(9):1621-1628. 被引量:558
  • 3王茜,杨莉云,杨德礼.面向用户偏好的属性值评分分布协同过滤算法[J].系统工程学报,2010,25(4):561-568. 被引量:24
  • 4ISAAC S, SHILAD S. Rating: how difficult is it? [C] // Proceedings of the 5th ACM Conference on Recommender Systems. Washington: ACM, 2011:149 - 156.
  • 5HARPER F M, LI X, CHEN Y, et al. An economic model of user rating in an online recommender system [M] // User Modeling. Berlin Heidelberg: Springer, 2005: 307 - 316.
  • 6BENNETT J, LANNING S. The netflix prize [C]// Proceedings of KDD Cup and Workshop. California: [s. n. ], 2007, 9(2): 51-52.
  • 7BURTON R E, KEBLER R W. The "half-life" of some scientific and technical literatures [J]. American Docu- ment, 1960, 11(1): 18-22.

二级参考文献24

  • 1Brccsc J, Hcchcrman D, Kadic C. Empirical analysis of predictive algorithms for collaborative filtering. In: Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence (UAI'98). 1998.43~52.
  • 2Goldberg D, Nichols D, Oki BM, Terry D. Using collaborative filtering to weave an information tapestry. Communications of the ACM, 1992,35(12):61~70.
  • 3Resnick P, lacovou N, Suchak M, Bergstrom P, Riedl J. Grouplens: An open architecture for collaborative filtering of netnews. In:Proceedings of the ACM CSCW'94 Conference on Computer-Supported Cooperative Work. 1994. 175~186.
  • 4Shardanand U, Mats P. Social information filtering: Algorithms for automating "Word of Mouth". In: Proceedings of the ACM CHI'95 Conference on Human Factors in Computing Systems. 1995. 210~217.
  • 5Hill W, Stead L, Rosenstein M, Furnas G. Recommending and evaluating choices in a virtual community of use. In: Proceedings of the CHI'95. 1995. 194~201.
  • 6Sarwar B, Karypis G, Konstan J, Riedl J. Item-Based collaborative filtering recommendation algorithms. In: Proceedings of the 10th International World Wide Web Conference. 2001. 285~295.
  • 7Chickering D, Hecherman D. Efficient approximations for the marginal likelihood of Bayesian networks with hidden variables.Machine Learning, 1997,29(2/3): 181~212.
  • 8Dempster A, Laird N, Rubin D. Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, 1977,B39:1~38.
  • 9Thiesson B, Meek C, Chickering D, Heckerman D. Learning mixture of DAG models. Technical Report, MSR-TR-97-30, Redmond:Microsoft Research, 1997.
  • 10Sarwar B, Karypis G, Konstan J, Riedl J. Analysis of recommendation algorithms for E-commerce. In: ACM Conference on Electronic Commerce. 2000. 158~167.

共引文献579

同被引文献29

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部