期刊文献+

高分辨率熵相容算法在二维溃坝问题中的应用 被引量:8

High-resolution entropy consistent algorithm for the two-dimensional dam-break flows
原文传递
导出
摘要 该文将高分辨率熵相容算法推广应用于二维浅水波方程的数值求解问题中。该算法空间方向采用三阶中心加权基本无振荡(CWENO)重构,时间方向采用具有强稳定特点的优化三阶Runge-Kutta方法,数值通量采用总熵恰当耗散的高分辨率熵相容函数。用该算法实现了几个典型的二维溃坝问题的数值求解,并通过对所得结果的分析与讨论研究算法的性能。数值结果显示,高分辨率熵相容算法适用于二维溃坝问题的数值求解,且该算法具有分辨率高和数值稳定性强等优势。 The high-order, high-resolution entropy consistent algorithm is popularized to the two-dimensional shallow water equations. The scheme is reconstructed by the third-order central weighted essentially non-oscillatory (CWENO) reconstruction in space, the third-order optimal Runge-Kutta method in time and the new high-resolution entropy consistent flux function with the proper dissipation of the total entropy. The algorithm is utilized for analyzing the several special dam-break flows. Moreover, the numerical results are analyzed for the algorithm's property, which show that the new method is feasible for two-dimensional dam-break flows with high-resolution and strong-stability.
出处 《水动力学研究与进展(A辑)》 CSCD 北大核心 2013年第5期545-551,共7页 Chinese Journal of Hydrodynamics
基金 国家自然科学基金项目(11171043 11001031) 中央高校基本科研业务费专项资金(CHD2012TD015) 中央高校基本科研业务费(2013G1121088)~~
关键词 浅水波方程 CWENO重构 优化Runge—Kutta方法 shallow water equations CWENO reconstruction optimal Runge-Kutta method
  • 相关文献

参考文献13

  • 1DELIS A I,NIKOLOS I K. A novel multidimensionalsolution reconstruction and edge-based limiting proce-dure for unstructured cell-centered finite volumes withapplication to shallow water dynamics[J]. InternationalJouranl of Numerical Methods in Fluids,2012,71(5):584-633.
  • 2郑素佩,封建湖,刘彩侠.二维双曲守恒律标量方程的三阶CWENO-型熵相容算法[J].计算机应用,2012,32(10):2745-2747. 被引量:6
  • 3ISMAIL F. Towards a reliablde prediction of shocks inhyperbolic flow:Resolving carbuncles with entropy andvorticity control[D]. University of Michigan,Michigan,USA,2006.
  • 4ISMAIL F,ROE P L. Affordable,entropy-consistentEuler flux functions II:Entropy production at shocks[J].Journal of Computational Physics,2009,228(15):5410-5436.
  • 5MOHAMMED A N,ISMAIL F. Study of an entropy-consistent Navier-Stokes flux[J]. International Journalof Computational Fluid Dynamics,2013,27(1):1-14.
  • 6FJORDHOLM U S,MISHRA S,TADMOR E. Well-ba-lanced and energy stable schemes for the shallow waterequations with discontinuous topography[J]. Journal ofComputational Physics,2011,230(14):5587-5609.
  • 7FJORDHOLM U S,MISHRA S,TADMOR E. Entropystable ENO scheme[R]. Eidgen Ossische TechnischeHochschule Zurich,Zurich,Swiss,2011,1-16.
  • 8FJORDHOLM U S,MISHRA S,TADMOR E. Arbitra-rily high-order accurate entropy stable essentially nono-scillatory schemes for systems of conservation laws[J].SIAM Journal on Numerical Analysis,2012,50(2):544-573.
  • 9LEVY D,PUPPO G,RUSSO Q A third order centralWENO scheme for 2D conservation laws[J]. Appl.Numer. Math.,2000,33(1-4):407-414.
  • 10陈建忠,史忠科,胡彦梅.二维浅水方程的高阶松弛格式求解[J].水动力学研究与进展(A辑),2007,22(3):305-310. 被引量:2

二级参考文献18

  • 1CHEN Jian-zhong SHI Zhong-ke.HIGH-RESOLUTION SEMI-DISCRETE CENTRAL SCHEME FOR DAM-BREAK PROBLEMS[J].Journal of Hydrodynamics,2005,17(5):585-589. 被引量:4
  • 2Jianzhong Chen Zhongke Shi.Application of a fourth-order relaxation scheme to hyperbolic systems of conservation laws[J].Acta Mechanica Sinica,2006,22(1):84-92. 被引量:7
  • 3CHEN Jian-zhong, SHI Zhong-ke.SOLUTION OF 2D SHALLOW WATER EQUATIONS BY GENUINELY MULTIDIMENSIONAL SEMI-DISCRETE CENTRAL SCHEME[J].Journal of Hydrodynamics,2006,18(4):436-442. 被引量:3
  • 4JIANG GUANG-SHAN, WANG SHUN CHI. Efficient implementa- tion of weighted ENO schemes [ J]. Journal of Computational Phys- ics, 1996, 126(1): 202-228.
  • 5ZHANG XIANGXIONG, LIU YUANYUAN, SHU CHI-WANG. Maximum-principle-satisfying high order finite volume weighted es- seneially nonoscillatory schemes for convection-diffusion equations [ J]. SIAM Journal on Scientific Computing, 2012, 34(2) : 627 - 658.
  • 6LEVY D, PUPPO G, RUSSO G. A third order central WENO scheme for 2D conservation laws [ J]. Applied Numerical Mathe- matics, 2000, 33(1/2/3/4): 415-421.
  • 7KURGANOV A, LEVY D. A third-order semi-discrete central scheme for conservation laws and convection diffusion equations [ J]. SIAM Journal on Scientific Computing, 2000,22(4) : 1461 -1488.
  • 8TADMOR E. Numerical viscosity and the entropy condition for con-servative difference schemes [ J]. Mathematics of Computation, 1984, 43(168): 369-381.
  • 9TADMOR E. The numerical viscosity of entropy stable schemes for systems of conservation laws [ J]. Mathematics of Computation, 1987, 49(179) : 91 - 103.
  • 10LEFLOCH P-G, ROHDE C H. High-order schemes, entropy ine- qualities and nonclassical shocks [ J]. SIAM Journal on Numerical Analysis, 2000, 37(6): 2023-2060.

共引文献6

同被引文献36

引证文献8

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部