摘要
在 Monte-Carlo算法中引入流率项 ,通过对具有流率分叉结构的 CSTR-BZ反应体系 SNB( Showalter-Noyes-Bar-Eli)模型的随机分析 ,讨论了最低反应浓度的意义及流率项连续性的影响 .与实验结果及确定性数值积分结果比较表明 ,对于流动的实际反应体系 ,基于“质量作用定律”的宏观确定性方法仍具有适用性 .
The CSTR BZ reaction system described by SNB model, in which oscillatory dynamics is varied with flowrate k f, is studied by stochastic analysis. The implication of the minimum reaction concentration is discussed, and the continuous effect of flow rate is also investigated. Comparison with deterministic analysis approach and the results of experiment in CSTR BZ reaction shows that deterministic description based on mass action law can still be applied effectively.
出处
《高等学校化学学报》
SCIE
EI
CAS
CSCD
北大核心
2000年第11期1727-1732,共6页
Chemical Journal of Chinese Universities
基金
国家自然科学基金! (批准号 :2 95 7310 9)
教育部留学归国人员启动基金