摘要
常(p,q)-Laplacian系统是一类比较重要的微分方程模型,来自于非牛顿流体问题及非线性弹性问题.研究了具有次凸位势的非自治常(p,q)-Laplacia系统周期解的存在性.利用临界点理论中的极小作用原理得到了系统周期解存在性的充分条件.
Ordinary (p,q)-Laplacian systems is an important model of differential equation from non- Newtonian fluid theory and nonlinear elasticity. In this paper,we investigate the existence of periodic solutions for nonautomous ordinary (p,q)-Laplacian systems with subcovex potential. By using the least action principle from critical point theory,we obtain some sufficient conditions for existence of periodic solutions to these systems.
出处
《河北师范大学学报(自然科学版)》
CAS
北大核心
2013年第6期549-554,共6页
Journal of Hebei Normal University:Natural Science
基金
国家自然科学基金(31260098)
中央高校基本科研业务费专项资助(31920130004)
西北民族大学中青年科研项目(12XB38)