期刊文献+

非自治常(p,q)-Laplacian系统周期解的存在性

Existence of Periodic Solutions for a Class of Ordinary(p,q)-Laplacian Systems
下载PDF
导出
摘要 常(p,q)-Laplacian系统是一类比较重要的微分方程模型,来自于非牛顿流体问题及非线性弹性问题.研究了具有次凸位势的非自治常(p,q)-Laplacia系统周期解的存在性.利用临界点理论中的极小作用原理得到了系统周期解存在性的充分条件. Ordinary (p,q)-Laplacian systems is an important model of differential equation from non- Newtonian fluid theory and nonlinear elasticity. In this paper,we investigate the existence of periodic solutions for nonautomous ordinary (p,q)-Laplacian systems with subcovex potential. By using the least action principle from critical point theory,we obtain some sufficient conditions for existence of periodic solutions to these systems.
作者 张申贵
出处 《河北师范大学学报(自然科学版)》 CAS 北大核心 2013年第6期549-554,共6页 Journal of Hebei Normal University:Natural Science
基金 国家自然科学基金(31260098) 中央高校基本科研业务费专项资助(31920130004) 西北民族大学中青年科研项目(12XB38)
关键词 常(p q)-Laplacian系统 周期解 临界点理论 ordinary (p,q)-Laplacian systems periodic Solutions critical point theory
  • 相关文献

参考文献7

  • 1PASCA D, TANG Chunlei. Some Existence Results on Periodic Solutions of Nonautonomous Second Order Differential Systems with (q, p)-Laplaeian [J]. Applied Mathematics Letters, 2010,23 : 246-251.
  • 2PASCA D. Periodic Solutions of a Class of Nonautonomous Second-order Differential Systems with (q, p)-Laplacian [J . Bull Belg Math Soc,2010,17 : 841-850.
  • 3YANG Xiaoxia,CHEN Haibo. Periodic Solutions for Autonomous (q, p)-Laplacian System with Impulsive Effects [J]. Journal of Applied Mathematics, 2011,10 : 1-19.
  • 4PASCA D, TANG Chunlei. New Existence Results on Periodic Solutions of Nonautonomous Second Order Differential Systems with (q, p)-Laplacian[J] Bull Belg Math Soc,2012,19 : 19-27.
  • 5CRINGANU J, PASCA D. Existence of Periodic Solutions for Nonautonomous Second Order Dfferential Systems with ( Pl ; P2 )-Laplacian Using the Duality Mappings [J]. Annals of the University of Bucharest, 2011,45 (2) : 139-155.
  • 6刘鹏,安天庆,严葵芳.二阶非自治(q,p)-Laplace方程组周期解的存在性(英文)[J].内蒙古大学学报(自然科学版),2011,42(2):121-126. 被引量:1
  • 7MAWHIN J ,WILLEM M. Critical Point Theory and Hamiltonian Systems [M]. New York:Springer-verlag, 1989.

二级参考文献12

  • 1Pasca Daniel, Tang Chunlei. Some existence results on periodic solutions of nonautonomous second-order differential systems with (q, p) -Laplaeian[J]. J. Appl. Math. Letters,2010,23246-251.
  • 2Mawhin J, Willem M. Critical Point Theory and Ha rniltonian Systems [M]. Berlin : Springer-Verlag, 1989.
  • 3Tian Yu, Ge Weigao. Periodic solutions of nonautonomous second-order systems with p-Laplacian[J]. Nonlinear Anal, 2007,66 : 192-203.
  • 4Lv Haishen,Zhong Chengkui. A note on singular nonlinear boundary value problems for the one-dimensional p- Laplacian[J]. Appl. Math. , 2002,133(2-3) : 407-422.
  • 5Mansevich R, Mawhin J. Periodic solutions for nonlinear systems with p -Laplacian-like operators[J]. J. Differential Equations, 1998,145(2) : 367-393.
  • 6Wu Xingping,Tang Chunlei. Periodic solutions of a class of nonautonomous second order systems[J]. J. Math. Anal. Appl. , 1999,236:227-235.
  • 7Ding Yanheng. Existence and multiplicity results for homoclinic solutions to a class of Hamiltonian systems[J]. Nonlinear Anal. ,1995,25(11) :1095-1113.
  • 8Liu Zhaoli,Su Jiabao,Wang Zhiqiang. A twist condition and periodic solutions of Hamiltonian systems[J]. Adv. Math. ,2008,218(6) :1895-1913.
  • 9Zhang Shiqing. Symmetrically Homoclinic Orbits for Symmetric Hamiltonian Systems[J]. J. Math. Anal. Appl. ,2000,247(2) :645-652.
  • 10Wang Zhiyong,Zhang Jihui. Periodic solutions of a class of second order non-autonomous Hamiltonian systems [J]. Nonlinear Anal. , 2010,72(12) :4480-4487.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部