期刊文献+

基于不确定项观测器的混沌系统变结构控制

Sliding Mode Control for a Class of Chaotic System Based on Uncertainty Observer
下载PDF
导出
摘要 基于不确定项观测器方法,研究了一类状态不完全可测的、不确定混沌系统的、变结构控制问题。提出了利用不确定项的观测值估计真实值来设计控制器的新方法。适当选择观测器增益可以使观测误差充分的小,从而达到良好的控制效果。最后对Chua混沌系统进行数值仿真,结果表明该方法具有收敛性好,抖振小的优点。 The sliding mode control problem of uncertain chaotic system based on uncertainty observer is investigated.A control law using the observer estimation of the disturbance is derived.Moreover the observer can be designed to make the observer error small enough,so satisfying results can be getten.Finally,some simulation results about Chua chaotic system are given to demonstrate that the proposed controller has good convergence and little chatting.
出处 《科学技术与工程》 北大核心 2013年第29期8642-8646,共5页 Science Technology and Engineering
关键词 不确定混沌系统 不确定项观测器 变结构控制 uncertain chaotic system uncertainty observer sliding mode control
  • 相关文献

参考文献9

  • 1Lorenz E N. Deterministie non -periodic flows. J Atrnos Sci, 1963; 20: 130-141.
  • 2王兴元,段朝锋.基于线性状态观测器的混沌同步及其在保密通信中的应用[J].通信学报,2005,26(6):105-111. 被引量:14
  • 3Boutayeb M, Darouach M. Generalized stated-space observers for chaotic synchronization and secure communication. IEEE Transaction on Circuits and Systems I, 2002:49 (3) : 345-34-9.
  • 4关新平,范正平,陈彩莲,等.混沌控制及其在保密通信中应用.北京:国防工业出版社,2002.
  • 5Chen S H, Lu J. Synchronization of an uncertain unified chaotie sys- tem via adaptive control. Chaos, Solitons & Fractals, 2002;14 (4) : 643 -347.
  • 6Yah J J. Design of robust controllers for uncertain chaotic systems with nonlinear inputs. Chaos, Solitons & Fractals, 2002; 14 (4): 643-347.
  • 7Chiang T Y, Huang M L. Sliding mode control tbr uncertain unified chaotic systems with input nonlinearity. Chaos, Solitons & Fractals, 2004 ; 19:541 -547.
  • 8Zhang Q, Chen S H, Hu Y M, et al. Synchronizing the noise-per- turbed unified chaotic system by sliding mode control . Physica A, 2006; 371:317-324.
  • 9Belykh V N, Chua L O. New Type of Strange Attractor from a Geo- metric Model of Chuag Circuit. International Journal of Bifurcation & Chaos in Applied Sciences & Engineering, 1992;2, (3) :697-704.

二级参考文献22

  • 1WANG XingyuanSchool of Electronic and Information Engineering, Dalian University of Technology, Dalian 116024, China.Relation of chaos activity characteristics of the cardiac system with the evolution of species[J].Chinese Science Bulletin,2002,47(24):2042-2048. 被引量:21
  • 2CARROLL T L, PECORA L M. Synchronizing chaotic circuits[J].IEEE Transactions on Circuits and Systems, 1991, 38(4): 453-456.
  • 3MORGUL O, SOLAK E. Observer based synchronization of chaotic systems[J]. Physical Review E, 1996, 54(5): 4803-4811.
  • 4MORGUL O, SOLAK E. On the synchronization of chaotic systems by using state observers[J]. International Journal of Bifurcation and Chaos, 1997, 7(6): 1307-1322.
  • 5NIJMEIJER H, MAREELS I M Y. An observer looks at synchronization[J]. IEEE Transactions on Circuits and Systems I:Fundamental Theory and Applications, 1997, 44(10): 882-890.
  • 6GRASSI G, MASCOLO S. Nonlinear observer design to synchronize hyperchaotic systems via a scalar signal[J]. IEEE Transactions on Circuits and Systems Ⅰ: Fundamental Theory and Applications, 1997,44(10): 1011-1014.
  • 7LIAO T L. Observer-based approach for controlling chaotic systems[J].Physical Review E, 1998, 57(2): 1604-1610.
  • 8Yang S S, Duan C K. Generalized synchronization in chaotic systems[J]. Chaos, Solitons & Fractals, 1998, 9(10): 1703-1707.
  • 9HUIJBERTS H, LILGE T, NIJMEIJER H. Nonlinear discrete-time synchronization via extended observers[J]. International Journal of Bifurcation & Chaos, 2001, 11(7): 1997-2006.
  • 10YANG X S, CHEN G R. Some observer-based criteria for discrete-time generalized chaos synchronization[J]. Chaos, Solitons & Fractals, 2002, 13(6): 1303-1308.

共引文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部