摘要
Micron-sized cellulose microspheres were prepared through sol-gel method using NaOH/urea solution to dissolve cellulose, then cross-linked by 1,6-hexanylene diisocyanate (HDI), toluene 2,4-diisocyanate (TDI) and 1,4-phenylene diisocyanate (PDI), respectively. The reaction conditions for partial modification of the microspheres were studied. The degree of substitution (DS) in cellulose was controlled by adjusting the reaction conditions. HDI-crosslinked microspheres were partially modified with phenyl isocyanate to obtain chiral stationary phases (CSPs). The CSPs of a lower degree of crosslinking (DC) showed better chiral recognition ability than those of a higher DC. Meanwhile the CSPs prepared by pre- modification exhibited better chiral recognition ability than those prepared by pre-crosslinking.
Micron-sized cellulose microspheres were prepared through sol-gel method using NaOH/urea solution to dissolve cellulose, then cross-linked by 1,6-hexanylene diisocyanate (HDI), toluene 2,4-diisocyanate (TDI) and 1,4-phenylene diisocyanate (PDI), respectively. The reaction conditions for partial modification of the microspheres were studied. The degree of substitution (DS) in cellulose was controlled by adjusting the reaction conditions. HDI-crosslinked microspheres were partially modified with phenyl isocyanate to obtain chiral stationary phases (CSPs). The CSPs of a lower degree of crosslinking (DC) showed better chiral recognition ability than those of a higher DC. Meanwhile the CSPs prepared by pre- modification exhibited better chiral recognition ability than those prepared by pre-crosslinking.
基金
the National Natural Science Foundation of China(Nos.50973086 and 51273073)
Hubei Provincial Department of Education of China(Z 20081501)