期刊文献+

一种基于特征空间的月球撞击坑自动识别算法 被引量:3

An automatic algorithm for detecting lunar impact craters in a defined feature space
原文传递
导出
摘要 撞击坑不仅是月球表面常见的一种地质单元,也是研究月表地质年龄的一个重要因素,所以准确的识别撞击坑就很重要.本文提出了一种基于特征空间的对撞击坑进行自动识别的算法.新算法先将CCD图像转换成特征空间图像,在特征空间中通过自适应的区域检测寻找撞击坑候选区域.再对候选的区域进行椭圆拟合以进一步确认撞击坑,最后统计得到撞击坑个数.新算法在嫦娥一号采集的月球CCD图像上进行测试,测试结果显示该算法对月球中小撞击坑有较高的识别能力. Lunar crater is not only the most common geological unit on the surface of the moon, but also an important factor to study lunar surface's geological age. So how to detect crater accurately is very important. This paper presents an automatic algorithm for detecting middle or small size lunar impact craters which has been proposed in a defined feature space. The algorithm converts the CCD images into feature space images first. Then it will try to find the possible crater areas in feature space images. After those possible crater areas have been found, the edges of potential craters will be fitted, and the crater will be found if the fitting result is satisfied. The new algorithm has been tested in Chang'E-1 data; and testing results have shown that more middle and small size craters could be detected by the new algorithm proposed.
出处 《中国科学:物理学、力学、天文学》 CSCD 北大核心 2013年第11期1430-1437,共8页 Scientia Sinica Physica,Mechanica & Astronomica
基金 澳门科学技术发展基金资助项目(编号:048/2012/A2)
关键词 月球撞击坑 自动识别 特征空间 自适应区域检测 嫦娥数据 lunar impact craters, automatic recognition, feature space, adaptive area detection, Chang'E data
  • 相关文献

参考文献3

二级参考文献30

  • 1LI ChunLai1, REN Xin1, LIU JianJun1, ZOU XiaoDuan1, MU LingLi1, WANG JianYu2, SHU Rong2, ZOU YongLiao1, ZHANG HongBo1, Lü Chang1, LIU JianZhong1, ZUO Wei1, SU Yan1, WEN WeiBin1, BIAN Wei1, WANG Min1, XU Chun1, KONG DeQing1, WANG XiaoQian1, WANG Fang1, GENG Liang1, ZHANG ZhouBin1, ZHENG Lei1, ZHU XinYing1, LI JunDuo1 & OUYANG ZiYuan1 1 National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012, China,2 Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China.Laser altimetry data of Chang'E-1 and the global lunar DEM model[J].Science China Earth Sciences,2010,53(11):1582-1593. 被引量:20
  • 2Cheng Y,Goguen J,Johnson AE,et al.The mars exploration rovers descent image motion estimation system[J].IEEE Intelligent Systems,2004,19(3):13-21.
  • 3Junichiro K,Tatsuaki H,Takashi M,et al.Autonomous optical guidance and navigation strategy around a small body[J].AIAA Journal of Guidance,Control,and Dynamics,1997,20(5):1010-1017.
  • 4Johnson A E,Cheng Y,Matthies L H.Machine vision for autanomons small body navigation[C]//Proc.of IEEE Aerospace Conference.Montana,USA:IEEE Press,2000:18-25.
  • 5Andrew J.Autonomous Landing and Hazard Avoidance Technology[OL].Exploration Systems Research and Technology.Http://www-robotics,jpl.Nasa.Guv/tasks/show Task,cfm? FnseAction =showTasd&TaskID = 84&tdaID = 999986.
  • 6Burl M C,StoughT,Colwell W,et al.Automated detection of craters and other geological features[C]//6th International Symposium on Artificial Intelligence,Robotics and Automation in Space.Montreal,Canada:[s.n.],2001.
  • 7Michael G G.Coordinate registration by automated crater reconguition[J].Planetary and Space Science,2003,51:563-568.
  • 8Miso T,Hashimoto T,Ninomiya K.Optical guidance for autonomous landing of spacecraft[J].IEEE Transactions on Aerospace and Electronic,1999,35(2):459-473.
  • 9Teresa B,E.Ivo A,José S,et al.Automatic recognition of impact crater detection on the surface of mars[J].Springer Berlin/Heidelberg,2004,3212:489-496.
  • 10Rie Honda,Osamu Konishi,Ryushi Azuma,et al.Data mining system for planetary images-crater detection and categorization[J].Japan:[s.n.],1999.

共引文献23

同被引文献29

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部