期刊文献+

Erosion-Resistant Surfaces Inspired by Tamarisk 被引量:13

Erosion-Resistant Surfaces Inspired by Tamarisk
原文传递
导出
摘要 Tamarisk, a plant that thrives in arid and semi-arid regions, has adapted to blustery conditions by evolving extremely ef- fective and robust anti-erosion surface patterns. However, the details of these unique properties and their structural basis are still unexplored. In this paper, we demonstrate that the tamarisk surface only suffers minor scratches under wind-sand mixture erosion. The results show that the anti-erosion property of bionic sample, inspired by tamarisk surface with different surface morphologies, can be attributed to the flow rotating in the grooves that reduces the particle impact speed. Furthermore, the simulation and experiment on the erosion wear behavior of the bionic samples and bionic centrifugal fan blades show that the bionic surface with V-type groove exhibits the best erosion resistance. The bionic surface on centrifugal fan blades with opti- mum parameters can effectively improve anti-erosion property by 28.97%. This paper show more opportunities for bionic application in improving the anti-erosion performance of moving parts that work under dirt and sand particle environment, such as helicopter rotor blades, airplane propellers, rocket motor nozzles, and pipes that regularly wear out from erosion. Tamarisk, a plant that thrives in arid and semi-arid regions, has adapted to blustery conditions by evolving extremely ef- fective and robust anti-erosion surface patterns. However, the details of these unique properties and their structural basis are still unexplored. In this paper, we demonstrate that the tamarisk surface only suffers minor scratches under wind-sand mixture erosion. The results show that the anti-erosion property of bionic sample, inspired by tamarisk surface with different surface morphologies, can be attributed to the flow rotating in the grooves that reduces the particle impact speed. Furthermore, the simulation and experiment on the erosion wear behavior of the bionic samples and bionic centrifugal fan blades show that the bionic surface with V-type groove exhibits the best erosion resistance. The bionic surface on centrifugal fan blades with opti- mum parameters can effectively improve anti-erosion property by 28.97%. This paper show more opportunities for bionic application in improving the anti-erosion performance of moving parts that work under dirt and sand particle environment, such as helicopter rotor blades, airplane propellers, rocket motor nozzles, and pipes that regularly wear out from erosion.
出处 《Journal of Bionic Engineering》 SCIE EI CSCD 2013年第4期479-487,共9页 仿生工程学报(英文版)
基金 This work was supported by the Natural Science Foundation of China (Nos. 51175220, 51205161, 51290292), the Specialized Research Fund for the Doctoral Program of Higher Education (Nos. 20100061110023, 20120061120051), the China Post- doctoral Science Foundation on the 51 th Grant Program (2012M511345), the Projects of Cooperation and Inno- vation to National Potential Oil and Gas for Production and Research (No. OSR-04-04).
关键词 TAMARISK ANTI-EROSION numerical simulation bionic centrifugal fan blades tamarisk, anti-erosion, numerical simulation, bionic centrifugal fan blades
  • 相关文献

参考文献4

二级参考文献26

共引文献112

同被引文献113

引证文献13

二级引证文献49

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部