摘要
为了解决K-means算法中对于初值的敏感,提出了一种基于粒子群的改进的K-means聚类算法(IPSOFCM).在K-means算法中引入粒子群算法,可有效提高算法的全局搜索能力,有助于粒子更容易跳出局部束缚.实验结果证明,IPSOFCM算法聚类准确度高,稳定性好.
This paper puts forward a kind of improved K-means clustering algorithm based on Particle Swarm (IPSOFCM) ,in order to solve the K-means algorithm for the initial value sensitivity. Introducing the particle swarm algorithm in the K-means algorithm,which can effectively improve the algorithm' s global search ability and contribute to the particles are more easily jump out of local bonds. Experimental results show that the IPSOFCM clustering algorithm is with high accuracy,and good stability.
出处
《鞍山师范学院学报》
2013年第4期46-49,共4页
Journal of Anshan Normal University