期刊文献+

一种改进的基于粒子群的离线聚类算法

An Improved Offline Clustering Algorithm Based on Particle Swarm
下载PDF
导出
摘要 为了解决K-means算法中对于初值的敏感,提出了一种基于粒子群的改进的K-means聚类算法(IPSOFCM).在K-means算法中引入粒子群算法,可有效提高算法的全局搜索能力,有助于粒子更容易跳出局部束缚.实验结果证明,IPSOFCM算法聚类准确度高,稳定性好. This paper puts forward a kind of improved K-means clustering algorithm based on Particle Swarm (IPSOFCM) ,in order to solve the K-means algorithm for the initial value sensitivity. Introducing the particle swarm algorithm in the K-means algorithm,which can effectively improve the algorithm' s global search ability and contribute to the particles are more easily jump out of local bonds. Experimental results show that the IPSOFCM clustering algorithm is with high accuracy,and good stability.
作者 张英武
出处 《鞍山师范学院学报》 2013年第4期46-49,共4页 Journal of Anshan Normal University
关键词 粒子群 K—means 聚类 IPSOFCM Particle swarm K-means Clustering IPSOFCM
  • 相关文献

参考文献6

  • 1Doganay MC, Pedersen TB, Saygin Y, et al. Distributed privacy preserving K-means clustering with additive secret sharing [ A]. PAIS '08 Proceedings of the 2008 international workshop on Privacy and anonymity in information society[ C ]. New York: ACM,2008,3-11.
  • 2Jain B J, Obermayer K. Elkan' s K-means algorithm for graphs [ A ]. MICAI' 10 Proceedings of the 9th Mexican international conference on Artificial intelligence conference on Advances in soft computing[ C]. Berlin : Springer-Verlag ,2010 ,22-32.
  • 3Fauber S, Schwenker F. Semi-Supervised kernel clustering with sample-to-cluster weights [ A ]. Proceedings of the First IAPR TC3 conference on Partially Supervised Learning[ C ]. Berlin : Springer-Verlag,2011,72-81.
  • 4Seliya N, Khoshgoftaar TM,Zhong Shi. Analyzing Software Quality with Limited Fault-Proneness Defect Data [ A ]. Proceed- ings of the Ninth IEEE International Symposium on High-Assurance Systems Engineering [ C ]. Washington : IEEE Compter Society Washington,2005,89-98.
  • 5Sun H J, Wang S G ,Jiang Q S. FCM-based model selection algorithms for determining the number of clusters [ J ]. J Pattern Recognition, 2004 ( 37 ) : 2027-2037.
  • 6M G Epitropakis,V P Plagianakos, M N Vrahatis. Evolving cognitive and social experience in Particle Swarm Optimization through Differential Evolution: A hybrid approach [ J ]. Information Sciences ,2012,216:50-92.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部