期刊文献+

论Hilbert型积分不等式及其算子表示 被引量:12

On Hilbert-type Integral Inequalities and their Operator Expressions
下载PDF
导出
摘要 引入独立参量,应用权函数的方法及实分析技巧,建立齐次与非齐次核两类Hilbert型积分不等式的等价联系,定义了等价的Hilbert型积分算子,还考虑了一些特殊核的范数. By introducing independent parameters, applying the way of weight functions and using technique of real analysis, an equivalent connection of two kinds of Hilbert-type integral inequalities with the homogeneous kernels and the non-homogeneous kernels is provided. Furthermore, we define equivalent Hilbert-type integral operators and obtain the norms of some operators in particular kernels.
作者 杨必成
出处 《广东第二师范学院学报》 2013年第5期1-17,共17页 Journal of Guangdong University of Education
基金 国家自然科学基金资助项目(61370186) 2012年广东省高校学科建设专项资金项目(2012KJCX0079)
关键词 权函数 HILBERT型积分不等式 等价式 Hilbert型积分算子 范数 weight function Hilbert-type integral inequality equivalent form Hilbert-type integraloperator norm
  • 相关文献

参考文献24

  • 1SCHU'R I. FJernerkungen sur Theorie der beschrankten Billnearformen mit unendlich vielen Verander-lichen [J]., J Math,1911,140:1-28.
  • 2HARDY q h. Note on a theorem of Hilbert concerning series of positive terms [J]. ProceedingsLondon Math Soc, 1925,23(2) :Records of Proc. xlv-xlvi.
  • 3HAYDY G H,LITTLE WOOD J E, POLYA G. Inequalities [M]. Cambridge: Cambridge UnivPress, 1952.
  • 4MJTRINOVIC D S,PECARIC J E,FINK A M. Inequalities involving functions and their integralsand derivatives [M]. Boston; Kluwer Academic Publishers, 1991.
  • 5YANG Bi~cheng. On Hilbert's integral inequality [J]. Journal of Mathematical Analysis andApplications, 1998,220: 778 - 785.
  • 6YANG Bi-cheng,RASSIAS Th M. On the way of weight coefficient and research for Hilbert-typeinequalities [J],Math Ineq Appl,2003,6(4) : 625 - 658.
  • 7YANG Bi-cheng. On an extension of Hilbert's integral inequality with some parameters [J]. TheAustralian Journal of Mathematical Analysis and Applications, 2004,1(1),Art. 11:1 - 8.
  • 8YANG Bi-cheng. On the norm of an integral operator and application [J]. Journal of MathematicalAnalysis and Applications, 2006 , 321 ; 182 -192.
  • 9YANG Bi-cheng. On the norm of a Hilbert,s type linear operator and applications [J]. J Math AnalAppl, 2007, 325:529-541.
  • 10YANG Bi-cheng, BRNETIC I,KRNIC M,et al. Generalization of Hilbert and Hardy-Hilbertintegral inequalities [J]. Math Ineq and Appl, 2005,8(2) :259 -272.

二级参考文献7

共引文献84

同被引文献23

引证文献12

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部