期刊文献+

彩色可视传感阵列基元匹配快速定量算法

A fast quantitative identification algorithm of colorimetric visual-sensor-array based on basic units matching
下载PDF
导出
摘要 在彩色可视传感阵列传统处理方法中,存在着数据量大,人工分析困难、种类浓度识别难以同一次实现等问题,针对这些问题,考虑到同类气体饱和响应阵列点位置一致性的特点,提出一种彩色可视阵列基元匹配快速定量识别算法。该算法首先采用设置经验阈值消除冗余量,进行去噪和特征提取,减少人工分析量;然后进行基于二值化基元图模板匹配的定量分析种类识别,减少计算量,增加气体识别效率和精度;最后,综合模糊逻辑和神经网络2种人工智能方法的优点,建立彩色传感阵列气体浓度识别的自适应模糊推理系统。算法优势在于将不同气体的种类和浓度检测分开进行,解决了种类、浓度同时识别时可能出现特征数据交叉感染导致错误识别的问题。基元模板匹配分析结果显示,氨气、氯气和二氧化硫3种气体分类识别结果准确率达100%,利用模糊神经网络方法对氨气浓度识别率准确度较高,误差在5%以内。 There are many difficulties to process a colorimetric visual-sensor-array by traditional processing methods, such as complicated manual analysis due to many data and hard to finish varieties and concentrations identification simultaneously, etc. In view of colorimetric-sensor-array's same location response to the same gas, a fast quantitative identification algorithm of colorimetric visual-sensor-array based on basic units matching which can solve these problems is proposed. First, denoising and feature extraction are processed by setting experienced threshold to reduce redundancies and lessen manual analysis. Second, a creative qualitative analysis method based on basic units is put forward, which not only reduces computation, but also increases efficiency and precision. Finally, a ANFIS of NH3 concentration recognition utilizing advantages of fuzzy logic and neural network is used to distinguish low concentration NH3. The advantage of this algorithm is that varieties and concentrations of different gases could be detected successively, solving the problem of recognition errors caused by characteristic data infection when varieties and concentrations based on basic units show of different gases are detected simultaneously. The results of template matching that the classification accuracy of NH:~, C12 and S()2 are 100%. The low concentration NH:~ classification accuracy is also very high after species identification with measurement errors below 5%.
出处 《重庆大学学报(自然科学版)》 EI CAS CSCD 北大核心 2013年第10期89-93,共5页 Journal of Chongqing University
基金 国家自然科学基金资助项目(30600157) 中央高校基本科研业务费资助项目(CDJXS10231117) 教育部高校博士点基金资助项目(20090191110030) 重庆市自然科学基金(CSTC 2009BB5219 2008AC7037) 重庆大学大型仪器设备开放基金
关键词 彩色可视传感阵列 模式识别 模板匹配 模糊神经网络 colorimetric visual-sensor-array pattern recognition template matching fuzzy neural network
  • 相关文献

参考文献14

  • 1Rakow N A,Suslick K S. A colorimetric sensor arrayfor odour visualization [ J]. Nature, 2000406 : 710-713.
  • 2Liang F,Musto C J,Suslick K S. A simple and highlysensitive colorimetric detection method for gaseousformaldehyde [J ]. Journal of the American ChemicalSociety. 2010,132(12) :4046-4047.
  • 3Musto C J, Lim S H, Suslick K S. Colorimetricdetection and identification of natural and artificialsweeteners[J], Analytical Chemistry,2009, 81 (15):6526-6533.
  • 4Suslick B A,Liang F,Suslick K S. Discrimination ofcomplex mixtures by a colorimetric sensor array: coffeearomas [J]. Analytical Chemistry, 2010,82 (5):2067-2073.
  • 5Shabbir S H,Joyce L A,Lynch V M. Pattern-basedrecognition for the rapid determination of identity,concentration, and enantiomeric excess of subtlydifferent threo diols [J]. Jounal of the AmericanChemical Society ,2009,131 (36) : 13125-13131.
  • 6Luo X G,Liu P. A novel chemical detector usingcolorimetric sensor array and pattern recognitionmethods for the concentration analysis of NH3 [J ].Review of Socientific Instruments, 2010,81(10) : 1-6.
  • 7耿志广,王希武,王寅龙,神鹏飞.基于人工神经网络的电子鼻对混合气体检测研究[J].现代计算机,2010,16(5):45-48. 被引量:12
  • 8Chen Z, Suslick K S. Colorimetric sensor array for softdrink analysis [J]. Journal of Agricultural and FoodChemistry, 2007’ 55(2); 237-242.
  • 9庄家俊,骆德汉,邹宇华.百草油鉴别分类的电子鼻实现方法研究[J].传感器与微系统,2010,29(7):62-65. 被引量:15
  • 10Lee D S,Huh J S,Lee D D. Classifying combustiblegases using micro-gas sensor array [J]. Sensors andActuators B: Chemical?2003,93(1/3) : 1-6.

二级参考文献20

  • 1殷勇,田先亮.基于PCA与Wilks准则的电子鼻酒类鉴别方法研究[J].仪器仪表学报,2007,28(5):849-852. 被引量:21
  • 2J.W.Gardner,P.N.Bartlett.A Brief History of Electronic Noses[J].Sensors and Actuators,1994,B18-19:211-220.
  • 3Kim B W,Kim S M.GA-Optimized Back-Propagation Neural Network with Multi-Parameterized Gradients and Applications to Predicting Plasma Etch Data[J].Chemo Metrics and Intelligent Laboratory Systems,2005,79:123-128.
  • 4Kim K J.Artificial Neural Networks with Evolutionary Instance Selection for Financial Forecasting[J].Expert Systems with Applications,2006,30:519-526.
  • 5Marzia Z,Cosimo D,Pietro S,et al.Drift Counteraction with Multiple Self -Organizing Maps for an Electronic Nose[J].Sensors and Actuators B,2004,98:305-317.
  • 6Bicego M.Odor Classification Using Similarity-Based Representation[J].Sensors and Actuators B,2005,110:225-230.
  • 7袁曾任.人工神经网络及其应用[M].清华大学出版社,2000-12.
  • 8De Vito S,Massera E,Quercia L,et al. Analysis of volcanic gases by means of electronic nose[J].Sensors and Actuators B:Chemical,2007,127( 1 ) :36 -41.
  • 9Brezmes J, Fructuoso M L L, Lobet E, et al. Evaluation of an electronic nose to assess fruit ripeness [ J]. IEEE Sensors Journal, 2005,5( 1 ) :97 -108.
  • 10Pang L, Wang J, Lu X, et al. Discrimination of storage age for wheat by e-nose [ J]. Transactions of the ASABE ,2008,51 ( 5 ) : 1707 -1712.

共引文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部