期刊文献+

Bloch混沌系统的动力学行为研究及仿真 被引量:3

Dynamical behavior study for Bloch chaotic system and simulation
下载PDF
导出
摘要 混沌系统的全局指数吸引集在混沌的控制和同步之中起着非常重要的作用。首先给出了Bloch混沌系统的动力系统模型,然后借助一个适当的Lyapunov函数和最优化理论,研究了这个混沌系统的全局指数吸引集,得到了它的全局指数吸引集Q。可以断定轨线从吸引集Q外进入吸引集Q的速率是以指数速率,并且得到了该速率估计的表达式。通过计算机模拟验证了计算理论的可行性。 The globally exponentially attractive set for a chaotic system is important in chaos control, chaos synchronization find its applications. The globally exponentially attractive set of the bloch chaotic system is investigated via constructing a Lyapunov function and optimation theory. The globally exponentially attractive set Q for this system is derived. Furthermore, it can be con- cluded that the rate of the trajectories of the system going from the exterior of the set D to the interior of the set D is an exponen- tial rate. The estimate of the trajectories rate is also obtained. Numerical simulations are presented to show the effectiveness of the proposed scheme.
出处 《计算机工程与应用》 CSCD 2013年第22期30-32,共3页 Computer Engineering and Applications
基金 重庆市自然科学基金(No.2009BB3185) 中央高校基本科研业务费资助(No.CDJXSl0100029,No.CDJXSlll00026).
关键词 Bloch混沌系统 全局指数吸引集 数值仿真 Bloch chaotic system globally exponentially attractive set numerical simulations
  • 相关文献

参考文献16

  • 1Li Damei, Lu Jun-an, Wu Xiaoqun, et al.Estimating the ultimate bound and positively invariant set for the Lorenz system and a unified chaotic system[J].Journal of Mathematical Analysis and Applications, 2006,323 (2) : 844-853.
  • 2Liao Xiaoxin.On the global basin of attraction and positively invariant set for the Lorenz chaotic system and its application in chaos control and synchronization[J].Sci China Ser E,2004, 34:1404-1419.
  • 3Leonov G, Bunin A, Koksch N.Attractor localization of the Lorenz system[J].ZAMM, 1987,67:649-656.
  • 4杨洪亮,张付臣,舒永录.PRT系统的最终有界和正向不变集及其应用[J].计算机工程与应用,2011,47(29):242-245. 被引量:3
  • 5陈关荣,吕金虎.Lorenz系统族的动力学分析、控制和同步[M].北京:科学出版社,2003.
  • 6Wu Zhinan, Zhang Fuchen, Li Xiaowu.Localization of compact invariant sets of a 4D system and its application in chaos[J]. International Journal of Research and Reviews in Applied Sciences, 2012,12 ( 1 ) : 1-9.
  • 7Sun Yeong-Jeu.Solution bounds of generalized Lorenz chaotic systems[J].Chaos,Solitons and Fractals,2009,40:691-696.
  • 8舒永录,张付臣,杨洪亮.一个新的多维超混沌系统及其性质研究[J].四川大学学报(自然科学版),2011,48(4):857-864. 被引量:19
  • 9杨洪亮,张付臣,舒永录,李云超.一个新三维类洛伦兹系统的最终有界集和正向不变集及其在同步中的应用[J].山东大学学报(理学版),2010,45(9):83-89. 被引量:8
  • 10袁红,张付臣.新混沌系统的全局指数吸引集及其数值模拟[J].计算机工程与应用,2012,48(11):37-39. 被引量:5

二级参考文献42

  • 1LIAO Xiaoxin 1, 2, 3 , FU Yuli 4 & XIE Shengli 4 1. Department of Control Science & Control Engineering, Huazhong University of Science & Technology, Wuhan 430074, China,2. School of Automation, Wuhan University of Science & Technology, Wuhan 430070, China,3. School of Information, Central South University of Economy, Politics and Law, Wuhan 430064, China,4. School of Electronics & Information Engineering, South China University of Technology, Guangzhou 510640, China Correspondence should be addressed to Liao Xiaoxin (email: xiaoxin_liao@hotmail.com).On the new results of global attractive set and positive invariant set of the Lorenz chaotic system and the applications to chaos control and synchronization[J].Science in China(Series F),2005,48(3):304-321. 被引量:23
  • 2廖晓昕,罗海庚,傅予力,谢胜利,郁培.论Lorenz系统族的全局指数吸引集和正向不变集[J].中国科学(E辑),2007,37(6):757-769. 被引量:24
  • 3LI Damei, LU Junan, WU Xiaoqun, et al. Estimating the ultimate bound and positively invariant set for the Lorenz system and a unified chaotic system[J]. Journal of Mathematical Analysis and Applications, 2006, 323 (2) :844-853.
  • 4QIN Wenxin, CHEN Guanrong. On the boundedness of solutions of the Chen system[J]. Journal of Mathematical Analysis and Applications, 2007, 329 (1):445-451.
  • 5ANTONIN VANEEK, CELIKOVSKY SERGEJ. Control systems: from linear analysis to synthesis of chaos[M]. London: Prentice-Hall, 1996.
  • 6LU J, CHEN G. A new chaotic attractor coined [J]. Intemational Journal of Bifurcation and Chaos, 2002, 12 (3) :659-661.
  • 7LIAO X. On the global basin of attraction and positively invariant set for the Lorenz chaotic system and its application in chaos control and synchronization[ J]. Sci China Ser E, 2004,34:1404-1419.
  • 8POGROMSKY A YU, SANTOBONI G, NIJMELIER H. An ultimate bound on the trajectories of the Lorenz systems and its applications[ J]. Nonlinearity, 2003, 16 : 1597-1605.
  • 9VLADIMIR A BOICHENKO, GENNADII ALEKSEEVICH LEONOV, VOLKER REITMANN. Dimension theory for ordina- ry differential equations [ M ]. Wiesbaden: Teubner Verlag, 2005.
  • 10SWINNERTON-DYER PETER. Bounds for trajectories of the Lorenz equation : an illustration of how to choose Liapunov functions[J]. Physics Letters A, 2001,281 (2-3) :161-167.

共引文献28

同被引文献27

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部