期刊文献+

一种应用分治策略改进的FCM聚类算法 被引量:1

Divide and conquer improved fuzzy C-means clustering method
下载PDF
导出
摘要 传统的快速聚类算法大多基于模糊C均值算法(Fuzzy C-means,FCM),而FCM对初始聚类中心敏感,对噪音数据敏感并且容易收敛到局部极小值,因而聚类准确率不高。建立使用分治策略解决聚类问题的算法架构,充分考虑数据本身特性并对传统的FCM算法进行改进,标准数据集的实验结果表明这种基于分治策略的FCM聚类算法较好地提高了算法的聚类准确率,加快了收敛速度。 Traditional FCM is sensitive with the initial cluster center and noise also easily converge to a local minimum values, which leads to low clustering accuracy. This article proposes a method that uses divide and conquer technique with equivalency and compatible relation concepts to improve the performance of the FCM clustering method. Experiment results demonstrate ap- propriate accuracy.
出处 《计算机工程与应用》 CSCD 2013年第22期194-196,共3页 Computer Engineering and Applications
基金 国家自然科学基金(No.2011093051) 中国博士后科学基金(No.2011M501260) 湖北省自然科学基金(No.2010CDB04104)
关键词 模糊C均值聚类 分治策略 无监督聚类 微阵列数据 Fuzzy C-means Clustering(FCM) divide and conquer unsupervised clustering micro-array data
  • 相关文献

参考文献9

  • 1Pal,Bezdek J C.Complexity reduction for"large image"processing[J].IEEE Transactions on Systems, Man and Cybernetics: Part B,2002,32(5).
  • 2Bezdek J C, Hathaway R J.Progressive sampling schemes for approximate clustering in very large datasets[C]//Proceedings of 2004 IEEE International Conference on Fuzzy Systems, 2004,1 : 15-21.
  • 3陈松生,王蔚.改进的快速模糊C-均值聚类算法[J].计算机工程与应用,2007,43(10):167-169. 被引量:13
  • 4Eschrich S.Fast fuzzy clustering of infrared images[C]//Proceedings of IFSA World Congress and 20th NAFIPS Inter- national Conference, Vancouver, 2001,2 : 1145-1150.
  • 5Chiu Stephen L.A cluster estimation method with extension to fuzzy model identification[C]//Proceedings of the Third IEEE Conference on Control Application, 1994,2 : 1240-1245.
  • 6刘宜平,沈毅,刘志言.一种FCM聚类算法的改进与优化[J].系统工程与电子技术,2000,22(4):1-3. 被引量:17
  • 7仇金宏,沈明霞,彭增起,梁琨,吴海娟,史杰.基于改进型FCM算法的牛肉大理石花纹提取方法[J].农业机械学报,2010,41(8):184-188. 被引量:9
  • 8Selim S Z, Alsultan K.A simulated annealing algorithm for the clustering problem[J].Pattern Recognition, 1991,24 (100).
  • 9Kemel M S, Selim S Z.New algorithms for solving the fuzzy clustering problem[J].Pattern Recognition,1994,27(3).

二级参考文献24

  • 1张敏,于剑.基于划分的模糊聚类算法[J].软件学报,2004,15(6):858-868. 被引量:176
  • 2贾渊,姬长英,汤晓艳.基于计算机视觉的牛肉分级技术综述[J].农业工程学报,2004,20(5):47-50. 被引量:18
  • 3陈坤杰,秦春芳,姬长英.牛胴体眼肌切面图像的分割方法[J].农业机械学报,2006,37(6):155-158. 被引量:13
  • 4李明,李云松.改进的快速模糊C均值聚类的图像分割方法[J].兰州理工大学学报,2007,33(3):95-99. 被引量:12
  • 5.牛肉等级标准[S].[S].南京农业大学肉类研究室研制,2003..
  • 6Tadhg Brosnan, Da-Wen Sun. Inspection and grading of agricultural and food products by computer vision systems a review [ J ]. Computers and Electronics in Agriculture,2002,36 ( 2 - 3 ) : 193 - 213.
  • 7Kazuhiko S H, Kenichiro H, Akifumi O, et al. Grading meat quality by image processing [ J ]. Pattern Recognition,2000, 33(1) :97 - 104.
  • 8Chiu Stephen L. A cluster estimation method with extension to fuzzy model identification[ C ]//Proceedings of the Third IEEE Conference on Control Application, 1994,2:1 240 - 1 245.
  • 9Tai Waicheng,Fuzzy Sets Systems,1998年,93卷,49页
  • 10Wang W,Zhang J,Wang H.Grid-ODF:detecting outliers effectively and efficiently in large multi-dimensional databases[C]//Lecture Notes in Artificial Intelligence,Springer Inc,2005.

共引文献36

同被引文献16

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部