期刊文献+

基于拟牛顿方向的改进平滑l_0算法 被引量:2

Improved smoothed l_0 approximation algorithm based on Quasi-Newton direction
下载PDF
导出
摘要 稀疏分解算法是信号稀疏分解领域的一个重点问题,关系到稀疏分解在实际中的应用。在分析平滑l0算法的基础上,提出了基于拟牛顿方向的平滑l0算法。该算法在求解l0范数的近似函数最优解时,取代平滑l0算法中的最速上升方法,以拟牛顿方向作为迭代搜索方向。仿真结果表明,利用基于拟牛顿方向的平滑l0算法对信号进行稀疏分解,得到的稀疏分解系数精确度更高,与真实系数之间的误差更小,信噪比更大,抗噪声能力更强。 The sparse decomposition algorithm is an important problem in the signal sparse decomposition, and is related to the factual application. The smoothed l_0norm approximation algorithm based on the Quasi-Newton direction is proposed, and on the algorithm the Quasi-Newton direction is used instead of the steepest ascent direction when maximizing the approximation function of l_0 norm. The experimental results show that the proposed algorithm is efficient to the signal sparse decomposition and has the better ability to anti-noise-jamming, the decomposition coefficient is more accurate and the signal-to-noise is bigger with the algorithm.
作者 余付平 沈堤
出处 《计算机工程与应用》 CSCD 2013年第22期215-218,共4页 Computer Engineering and Applications
基金 国家自然科学基金(No.61003148)
关键词 平滑l0算法 拟牛顿方向 最速上升方向 稀疏分解 smoothed l_0 approximation algorithm Quasi-Newton direction steepest ascent direction sparse decomposition
  • 相关文献

参考文献9

  • 1焦李成,杨淑媛,刘芳,侯彪.压缩感知回顾与展望[J].电子学报,2011,39(7):1651-1662. 被引量:316
  • 2Labusch K,Barth E,Martinetz T.Robust and fast learning of sparse codes with stochastic gradient descent[J].IEEE Journal of Selected Topics in Signal Processing,2011,5(5) : 1048-1060.
  • 3Hyder Md M,Mahata K.A robust algorithm for joint-sparse recovery[J].IEEE Signal Processing Letters, 2009, 16 (12) : 1091-1094.
  • 4Mohimani H, Babaie-Zadeh M, Jutten C.A fast approach for over-complete sparse decomposition based on smoothed l^0 norm[J].IEEE Trans on Signal Processing, 2009, 52 (1): 289-301.
  • 5Hyder Md M,Mahata K.An improved smoothed l^0 approxi- mation algorithm for sparse representation[J].IEEE Transac-tions on Signal Processing,2010,58(4):2194-2205.
  • 6崔志富,张杭,路威.基于近似零范数的子空间迭代稀疏分解算法[J].解放军理工大学学报(自然科学版),2011,12(5):409-413. 被引量:3
  • 7Eftekhari A,Babaie-Zadeh M,Jutten C,et al.Robust-SL0 for stable sparse representation in noisy settings[C]//Proc IEEE Int Conf Acoust, Speech, Signal Process (ICASSP), 2009 : 3433-3436.
  • 8Zayyani H,Babaie-Zadeh M.Thresholded smoothed-l^0 (SL0) dictionart learning for sparse representation[C]//Proc IEEE Int Conf Acoust, Speech, Signal Process.ICASSP), 2009 : 1825-1828.
  • 9陈宝林.最优化理论与算法[M].2版.北京:清华大学出版社,2007:281-328.

二级参考文献112

  • 1张春梅,尹忠科,肖明霞.基于冗余字典的信号超完备表示与稀疏分解[J].科学通报,2006,51(6):628-633. 被引量:71
  • 2KIM S G. Underdetermined blind source separation based on subspaee representation [J]. IEEE Trans Signal Processing, 2009,57(7) : 2604-2614.
  • 3DONOHO D L. Stable recovery of sparse over-complete representation in the presence of noise [J]. IEEE Trans Inf Theory, 2006,52(1) :6-18.
  • 4Ichigaku Takigawa. Performance analysis of minimum l1-norm solutions for underdetermined source separation [J]. IEEE Trans Signal Processing, 2004,52(3): 582-591.
  • 5LIYuang-qing, Shun-Ichi Amari. Underdetermined blind source separation based on sparse representation [J]. IEEE Trans Signal Processing, 2006,54(2):423- 437.
  • 6DONOHO D L. For most large underdetermined systems of linear equation the minimal l1-norm solution is also the sparsest solution [R/OL]. [2010-04-20-]. http ://www-stat. Stanford. edu/- donoho/reports html.
  • 7Rayan Saab. Underdetermined anechoic blind source separation via lq -basis-pursuit with q < 1 [J]. IEEE Trans Signal Processing, 2007,55 (8) : 4004-4016.
  • 8Hosein Mohimani. A fast approach for over-complete sparse decomposition based on smoothed l0-norm [J]. IEEE Trans Signal Processing, 2009,57 (1) : 289-301.
  • 9IRINA F G. Sparse signal reconstruction from limited data using focus: a re-weighted minimum norm algorithm[J]. IEEE Trans Signal Processing, 1997, 45 (3) :600-616.
  • 10Emmanuel J. Candès,Michael B. Wakin,Stephen P. Boyd.Enhancing Sparsity by Reweighted ? 1 Minimization[J]. Journal of Fourier Analysis and Applications . 2008 (5-6)

共引文献319

同被引文献26

  • 1Cand:s E J and Wakin M B. An introduction to compressive sampling[J]. IEEE Signal Processing Magazine, 2008, 25(2): 21-30.
  • 2Mohimani H, Zadeh M, and Jutten C. A fast approach for overcomplete sparse decomposition based on smoothed L0 norm[J]. IEEE Transactions on Signal Processing, 2009, 57(1): 289-301.
  • 3Hyder M M and Mahata K. An improved smoothed L0 approximation algorithm for sparse representation[J]. IEEE Transactions on Signal Processing, 2010, 58(4): 2194-2205.
  • 4Lv J, Huang L, Shi Y, et al: Inverse synthetic aperture radar imaging via modified smoothed L0 norm[J]. IEEE Antennas and Wireless Propagation Letters, 2014, 13(7): 1235-1238.
  • 5Liu Z, You P, Wei X, et al: Dynamic ISAR imaging of maneuvering targets based on sequential SL0[J]. IEEE Geoseience and Remote Sensing Letters, 2013, 10(5): 1041-1045.
  • 6Guo L and Wen X. SAR image compression and reconstruction based on compressed sensing[J]. Journal of Information gz Computational Science, 2014, 11(2): 573-579.
  • 7Liu Z, Wei X, and Li X. Aliasing-free micro-Doppler analysis based on short-time compressed sensing[J]. IET Signal Processing, 2013, 8(2): 176-187.
  • 8Liu T and Zhou J. Improved smoothed L0 reconstruction algorithm for ISI sparse channel estimation[J]. The Journal o/ China Universities of Posts and Telecommunications, 2014, 21(2): 40-47.
  • 9Ye X and Zhu W. Sparse channel estimation of pulse-shapingmultiple-input-multiple-output orthogonal frequency division multiplexing systems with an approximate gradient L2-SLO reconstruction algorithm[J]. IET Communications, 2014, 8(7) 1124-1131.
  • 10Gorodnitsky I F and Rao B D. Sparse signal reconstruction from limited data using FOCUSS: a reweighted minimum norm algorithm[J]. IEEE Transactions on Signal Processing, 1997, 45(3): 600-616.

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部