期刊文献+

船用水润滑橡胶尾轴承静刚度计算模型 被引量:4

Static stiffness calculation model of water-lubricated rubber stern tube bearing
原文传递
导出
摘要 为了解决水润滑橡胶尾轴承静刚度选取时,经验值与实际值相差较大的问题,提出了一种基于唯象理论的水润滑橡胶尾轴承静刚度计算模型。应用线性回归法和有限元法对计算模型进行线性化处理,求得静刚度模型参数,并用方差分析法对尾轴承静刚度的影响因素进行显著性检验。通过试验对尾轴承静刚度计算模型的正确性和有效性进行验证,提出了刚度修正系数。分析结果表明:长径比对尾轴承静刚度的影响最显著,弹性模量和比压次之,橡胶厚度影响最小;静刚度计算模型与参考文献中估算法和经验法相比,静刚度最小与最大相对误差分别为0.41%和34.77%,静刚度更接近橡胶尾轴承实际数值;橡胶尾轴承静刚度随比压升高非线性增大,最大达1.83×108 N·m-1。 In order to shorten the distence between the experience value and actual value of water- lubricated rubber stern tube bearing, a static stiffness calculation model was proposed by phenomenological theory. The calculation model was linearized to obtain the parameters by linear regression method and finite element method. Significance test for the influence factors of bearing static stiffness was carried out by difference method. Test method offered the stiffness correction coefficient, which verified the correctness and validity of the model. Analysis result shows that the most significant influence on static stiffness of stern tube bearing is length-diameter ratio, the second ones are modulus and pressure ratio, and the last one is rubber thickness. Compared the static stiffness model with the methods of estimation or experience in references, the minimum and maximum relative errors are 0.41% and 34.77 ~ respectively, indicating a closer value to the real. With the increase of pressure ratio, the static stiffness increases nonlinearly, the maximum change value is 1.83×10^8N·m^-1 tabs, 2 figs, 16 refs
出处 《交通运输工程学报》 EI CSCD 北大核心 2013年第5期61-66,共6页 Journal of Traffic and Transportation Engineering
基金 国家自然科学基金项目(51139005 51079119)
关键词 船舶工程 水润滑橡胶尾轴承 结构静刚度计算模型 有限元法 线性回归法 ship engineering water-lubricated rubber stern tube bearing structural static
  • 相关文献

参考文献9

二级参考文献40

  • 1周瑞平,姚世卫,张平,李冰融.三弯矩方程的理论研究及在轴系校中中的应用[J].武汉理工大学学报,2005,27(5):76-79. 被引量:20
  • 2秦柏,邵俊鹏.重型数控机床深孔加工动力减振镗杆的设计与仿真[J].哈尔滨理工大学学报,2006,11(1):139-141. 被引量:14
  • 3ADKINS J E,GENT A N.Load-deflexion Relations of Rubber Bush Mountings[J].Brit J Appl Phys,1954,20:354-358.
  • 4Hill J M.Radial Deflections of Rubber Bush Mountings of Finite Lengths[J].Int J Eng Sci,1975,20:407-422.
  • 5HORTON J M,Gover M J C,TUPHOLME G E.Stiffness of Rubber Bush Mountings Subjected to Radial Loading[J].Rubber Chemistry and Technology,2000,73(2):253-264;619-633.
  • 6刘永明,沈荣瀛,严济宽.多层隔振系统多向冲击响应计算[J].中国造船,1997,38(1):88-95. 被引量:9
  • 7[1]盛骤,谢式千,潘承毅.概率论与数理统计.北京:高等教育出版社.1995.
  • 8ABS.Shafting alignment analysis training notes[M].Newyork:American Bureau of Shipping,2002.
  • 9Lech Murawski.Shaft line alignment analysis taking ship construction flexibility and deformation into consideration[J].Marine Structures,2005,18:62-84.
  • 10Vulic Nenad,Sestan Ante,Cvitanic Vedrana.Shafting Alignment Calculation and Validation Criteria[C].//Matejicek,Franjo.Extended abstracts of the 5th International Congress of Croatian Society of Mechanics.Zagreb:Croatian Society of Mechanics,2006:179-180.

共引文献309

同被引文献38

引证文献4

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部