期刊文献+

直接加权优化辨识中未知权重值的迭代选取 被引量:1

Iterative selection of unknown weights in direct weight optimization identification
下载PDF
导出
摘要 对于非线性系统的直接加权优化辨识算法,通过在原线性仿射函数形式中,增加若干关于输入观测数据序列的线性项来增强逼近非线性。对于增加若干线性项后展开式中的两类未知权重值的选取,分别从理论和实用上推导出这些未知权重值的选取过程,并明确权重值间的关键和辅助作用。理论上的推导分析可明确增加的未知权重值在整个逼近非线性系统的目的中起着辅助作用;实用上的推导分析展示了怎样将某些复杂的最优化问题经过整理变换成常见的最优化问题,从而可利用最基础的优化方法来求解,并分别对理论和实用算法的收敛性做了必要的证明。最后用仿真算例验证所提方法的有效性和可行性。 For the direct weighted optimization identification method for the nonlinear system, some linear terms about input measured date sequences in the former linear affine function are added to approximate the non- linear property. To select the two classes of unknown weights in the expression of the some more linear terms, the detailed process is derived on how to select these unknown weights from theory analysis and engineering practice respectively, and the key and auxiliary role between the unknown weights is made sure. From the theo- ry analysis, the added unknown weights' auxiliary role can be known in the whole process of approximating the nonlinear system. From the practice analysis, it shows how to transform some complex optimization problems into the corresponding common problems. Then the common problems can be solved by the basic optimization method. The convergences of the theory and practical are proved. Finally, the efficiency and possibility of the proposed strategy can be confirmed hy the simulation example results.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2013年第11期2376-2383,共8页 Systems Engineering and Electronics
基金 国家自然科学基金(61104007) 航空科学基金(20101352015)资助课题
关键词 非线性系统 直接加权优化 权值选取 优化迭代 nonlinear system direct weighted optimization weight selection optimization iteration
  • 相关文献

参考文献15

  • 1Hjalmarssion H. A geometric approach to variance analysis in system identification[J]. IEEE Trans. of Automatic Control, 2011, 56(5), 983-997.
  • 2窦立谦,宗群,刘文静.面向控制的系统辨识研究进展[J].系统工程与电子技术,2009,31(1):158-164. 被引量:5
  • 3Tom O, Okko B. System identification for achieving robust per formance[J]. Automatica, 2012, 48(9):1975-1987.
  • 4Pacletti S. On the input-output representation of piecewise affine state space models [J]. IEEE Trans. on Automatic Control~ 2010, 55(1): 60-73.
  • 5Gerencser L, Hjalmarsson H. Identification of ARX systems with nonstationary input-asymptotic analysis with application to adaptive input design[J]. Automatica, 2009, 45(4) : 623 -633.
  • 6Mei H, Soderstrom T. Relations between bias-elimination least squares, the Frisch scheme and extend compensated least squares methods for identifying error in variables system[J]. Automatica, 2009, 45(3): 277-282.
  • 7Zdenfk V, Heinz A. System identification in frequency domain using wavelets: conceptual remarks[J]. Systems ~ Control Let ters, 2012,61(10) :1041 - 1051.
  • 8Babak M, Eliyar A. Deterministic-stochastic subspace identifica- tion method for identification of nonlinear structures as time-var- ying linear systems[J]. Mechanical Systems and Signal Processing, 2012,31(1):40 -55.
  • 9Lennart L. System identification ~ theory for the user[M]. En- glewond Cli{fs~ Prentice Hall. 1999.
  • 10Pintelon R, Schoukens J. System identification ~ a frequency domain approach[M]. New York: IEEE Press, 2001.

二级参考文献63

  • 1张立群,邵惠鹤.面向控制器设计的多变量系统辨识实验信号[J].控制与决策,2004,19(7):824-826. 被引量:2
  • 2张立群,邵惠鹤.基于内模控制的系统辨识实验信号设计[J].系统工程与电子技术,2004,26(10):1464-1465. 被引量:1
  • 3Akcay H, Heuberger P. A frequency-domain iterative identifi-cation algorithm using general orthonormal basis functions[J]. Automatica, 2001, 37(5) : 663 - 674.
  • 4Date P, Lanzon A. A combined iterative scheme for identifica tion and control redesigns[J].International Journal of Adaptive Control and Signal Processing, 2004, 18(8) : 629 - 644.
  • 5Hildebrand R, Lecchini A, Solari G, et aI. Prefiltering in iterative feedback tuning: optimization of the prefilter for accuracy [J]. IEEE Trans. on Automatic Control, 2004, 49(10) : 1801 - 1805.
  • 6Bombois X, Gevers M, Scorletti G, et al. Robustness analysis tools for an uncertainty set obtained by prediction error identification[J].Automatica, 2001, 37: 1629-1636.
  • 7Zhou K, Doyle J C, Glover K. Robust and optimal control [M]. Prentice-Hall, New Jersey, USA, 1996.
  • 8Gevers M, Bombois X, Codrons B. Model validation for control and controller validation in a prediction error identi cation framework Part I:theory[J].Automatica, 2003, 39 (3):403-427.
  • 9Sippe D. From data to performance-system identification uncertainty and robust control design[D]. Netherlands: Delft Uni versity of Technology, 2006.
  • 10Vinnicombe G. Frequency domain uncertainty and the graph topology[J]. IEEE Trans. on Automatic Control. 1993, 38(9) : 1371 - 1383.

共引文献4

同被引文献9

引证文献1

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部