期刊文献+

伪谱法求解非光滑最优控制问题的网格优化 被引量:7

Optimal mesh segmentation algorithm for pseudospectral methods for non-smooth optimal control problems
下载PDF
导出
摘要 伪谱法在求解非光滑最优控制问题时往往需要在迭代计算过程中进行网格优化,以提高对非光滑问题的适应性。针对现有网格优化方法中分段点收敛至不光滑点速度较慢的问题,提出了分段点最佳化的思想,即将分段点作为设计变量,根据误差曲线确定最佳分段点可能存在的区间,由求解器确定最佳的分段点位置,从而提高分段点收敛至不光滑点的速度。算例表明,分段点最佳化的网格优化算法能较大程度地提高伪谱法对非光滑最优控制问题的求解效率。 A mesh refinement algorithm is usually involved to improve the adapt pseudospectral methods to solve non-smooth optimal control problems. To increase the rate points converging to the practical non-smooth points, an optimal mesh segmentation method existing mesh refinement algorithm. With the proposed method, breakpoints are taken as given intervals determined according to the error estimate, and delivered to the numerical mined. A numerical example illustrates that the optimal mesh segmentation method can eff: ability when using of the mesh break- is introduced to the variables located in solver to be deter- ciently improve the
出处 《系统工程与电子技术》 EI CSCD 北大核心 2013年第11期2396-2399,共4页 Systems Engineering and Electronics
关键词 最优控制 网格优化 伪谱法 分段点最佳化 optimal control mesh refinement pseudospectral method optimal mesh segmentation
  • 相关文献

参考文献17

  • 1Elnagar G, Kazemi M A, Razzaghi M. The pseudospectral legendre method for discretizing optimal control problems[J]. IEEE Trans. on Automatic Control, 1995, 40(10) : 1793 - 1796.
  • 2Elnagar G, Razzaghi M. A collocation type method for linear quadratic optimal control problems[J]. Optimal Control Appli- cations and Methods, 1998, 18(3): 227- 235.
  • 3Benson D A. A Gauss pseudospectral transcription for optimal control[D]. Cambridge: Massachusetts Institute of Technology,2004.
  • 4Benson D A, Huntington G, Thorvaldsen T T P, et al. Direct trajectory optimization and costate estimation via an orthogonal collocation method[J]. Journal of Guidance, Control, and Dy namics, 2006, 29(6): 1435-1440.
  • 5Huntington G T. Advancement and analysis of a Gauss pseudospec tral transcription for optimal control[D]. Cambridge: Massachusetts Institute of Technology, 2007.
  • 6Garg D, Patterson M A, Darby C L, et al. Direct trajectory optirniza tion and costate estimation of finite-horizon and infinithorizon optimal control problems via a radau pseudospectral method[J]. Computational Optimization arm Applications, 2011, 49(2) :335 - 358.
  • 7Vlassenbroeck J, Dooren R V. A Chebyshev technique for sol ving nonlinear optimal control problems[J]. IEEE Trans. on Automatic Control, 1998, 33(4) : 333 - 340.
  • 8Vlassenbroeck J. A Chebyshev polynomial method for optimal control with state constraints[J]. Autornatica, 1988, 24(4): 499- 506.
  • 9Dooren R V, Vlassenbroeck J. A new look at the brachisto chrone problem[J]. Zeitschri ft fiir Angewandte Mathematik und Physik, 1980, 31(6): 785-790.
  • 10Fahroo F, Ross I M. Direct trajectory optimization by a Cheby shev pseudospectral method[J]. Journal of Guidance, Con- trol, and Dynamics, 2002, 25(1) : 160 - 166.

同被引文献67

  • 1雍恩米,陈磊,唐国金.飞行器轨迹优化数值方法综述[J].宇航学报,2008,29(2):397-406. 被引量:125
  • 2刘炯,马坚伟,杨慧珠,巴晶.缝洞型储层错格伪谱法模拟[J].石油地球物理勘探,2008,43(6):723-727. 被引量:6
  • 3王秀明,G.SERIANI,林伟军.利用谱元法计算弹性波场的若干理论问题[J].中国科学(G辑),2007,37(1):41-59. 被引量:24
  • 4李军峰.高精度有限差分波场正演模拟方法[D].成都:成都理工大学,2012.
  • 5Patera A T. A spectral element method for fluid dy-namics: laminar flow in a channel expansion[J]. Journal of Computational Acoustics, 1994, 2 (4) : 371-422.
  • 6Komatitsch D. Spectral and spectral-element meth- ods for the 2D and 3D elasto-dynamics equations in heterogeneous media[D]. Paris: Insti-tut de Physique du Globe, 1997.
  • 7Komatitsch D, Vilotte J P. The spectral element method: an efficient tool to simulate the seismic re- sponse of 2D and 3D geologieal structures[J]. Bul- lein of the Seismolgical Society of America, 1998,88 (2) :368-392.
  • 8Lee S J, Komatitseh D. Effects of topography on seismic-wave propagation: an example from North- ern Taiwan[J]. Bulletin of the Seismologieal Society of America,2009,99(1) :314-325.
  • 9Lee S J,Chan Y C,Komatitseh D. Effects of realistic surface topography on seismic ground motion in the Yangminshan region of Taiwan based upon the spec- tral-element method and LiDAR DTM[J]. Bulletin of the Seismological Society of America, 2009, 99 (2): 681-693.
  • 10Komatitsch D, Erlebacher G, G6ddeke G, et al. High- order finite-element seismic wave propagation mod- eling with MPI on a large GPU cluster[J]. Journal of Computational Physics,2010,229(20) :7692-7714.

引证文献7

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部