期刊文献+

基于内容与社会过滤的好友推荐算法研究 被引量:8

Friends recommendation algorithm based on the content and social filtering
下载PDF
导出
摘要 基于内容算法与社会过滤算法都是迄今为止在社交网络中较为成功的好友推荐算法。结合两者的优点,根据用户已有的好友来给用户推荐新的好友,并与用户的兴趣爱好、地理位置等个人信息相结合的方式来处理好友推荐问题。通过实验验证以及准确率和召回率的评测显示,改进的算法比传统的好友推荐算法在推荐性能上有较为明显的提高。 Content -based algorithm and social filtering algorithm are all successful algorithms in social network friend recommendation . This paper combines the advantages of the two algorithms , basing make new friends by means of connecting with users ’ old friends , and combining personal information such as users ’ interests , geographical location etc . to solve the problem of friends recommendation . Through experiments and the precision rate and recall rate evaluation , it showed that the new algorithm is more improved than the traditional friend recommendation algorithm in recommendation functions .
出处 《微型机与应用》 2013年第14期75-78,82,共5页 Microcomputer & Its Applications
关键词 社会过滤 好友推荐 内容相似性 基于内容算法 social filtering recommendation of friends content similarity content-based algorithm
  • 相关文献

参考文献8

  • 1GOU L, YOU F, GUO J, et al.Sfviz : interest-based friends exploration and recommendation in social networks[C].In Proceedings of the 2011 Visual Information CoJmn.nication- International Symposium, ACM, 2011.
  • 2SAVAGE S,BARANSKI M, CHAVEZ N E,et al.I'm feel- ing loco:a location based context aware recommendation system[C].In Advances in Location-Based Services :8th Interoational Symposium on Location-Based Services,Vienna, 2011.
  • 3DIMICCO J ,MILLEN D, GEYER W ,et al.Motivations for social neqorking at work[C].ACM CSCW,2008.
  • 4EHRLICH K, LIN C, MILLEN D, et al.Recommending topic for self-descriptions in online user profiles[C].ACM RecSys, 2008.
  • 5GROH G,EHMIG C.Recommendations in taste related domains : collaborative filtering vs. social filtering [ C ]. Proc. ACM Group '07 : 127-136.
  • 6LINDEN G, SMITH B, YORK J.Amazon.com recommenda- tions :Item-to-Item collaborative filtering[J].IEEE Intemet Computing, 2003,7 ( 1 ) : 76- 80.
  • 7HALPIN H,ROBU V,SHEPHERD H.The complex dynamics of collaborative tagging[C].In Proc. of WWW' 07 : 211 - 220.
  • 8AI.JANDAL W, BAHIRWANI V, CARAGEA D,et al.Ontol- ogy-aware classification and association rule mining for interest and link prediction in social networks[C].In SSS'09: AAAI Sorin Symposia 2006 on Social Semantic Web, 2009.

同被引文献97

  • 1张利军,李战怀,王淼.基于位置信息的序列模式挖掘算法[J].计算机应用研究,2009,26(2):529-531. 被引量:12
  • 2李峰,李芳.中文词语语义相似度计算——基于《知网》2000[J].中文信息学报,2007,21(3):99-105. 被引量:106
  • 3郭世泽,陆哲明.复杂网络基础理论[M].北京:科学出版社,2012.
  • 4Piao S, Whittle J. A Feasibility Study on Extracting Twitter Users' Interests Using NLP Tools for Serendipi- tous Connections [ C] //Proceedings of ttle 3rd International Conference on Privacy, Security, Risk and Trust and the 3rd International Conference on Social Computing. Washington D. C. , USA : IEEE Press, 2011 : 910-915.
  • 5Chen J,Geyer W, Duguan C, et al. Make New Friends, But Keep the Old: Recommending People on Social Networking Sites [ C ]//Proceedings of SIGCHI Conference on Human Factors in Computing Systems. New York, USA : ACM Press, 2009 : 201-210.
  • 6Hannon J,Bennett M, Smyth B. Recommending Twitter Users to Follow Using Content and Collaborative Filtering Approaches[ C]//Proceedings of the 4th ACM Conference on Recommender Systems. New York, USA: ACM Press ,2010 : 199-206.
  • 7Jamali M, Ester M. A Matrix Factorization Technique with Trust Propagation for Recommendation in Social Networks [ C ]//Proceedings of the 4th ACM Conference on Recommender Systems. New York, USA: ACM Press ,2010 : 135-142.
  • 8Lo S, Lin C. WMR A Graph-based Algorithm for Friend Recommendation [C ]//Proceedings of 2006 IEEE/WIC/ACM International Conference on Web Intelligence. Piscataway, USA: IEEE Computer Society, 2006 : 121-128.
  • 9Blei D M, Ng A Y, Jordan M I. LatentDirichlet Allocation [J]. Journal of Machine Learning Research, 2003, ( 3 ) :993-1022.
  • 10Zeng Jianping, Zhang Shiyong. Variable Space Hidden Markov Model for Topic Detection and Analysis [ J]. Knowledge-based Systems ,2007,20(7 ) :607-613.

引证文献8

二级引证文献55

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部