期刊文献+

分解组合模型在短期燃气预测中的应用 被引量:1

Decomposition-combined model in the short-term prediction of gas
下载PDF
导出
摘要 在对城市燃气负荷数据特性进行分析的基础上,提出了针对城市燃气负荷量短期预测的思想即分解-组合预测模型,同时提出了三种分解方法对分解-组合预测模型进行了验证。首先在建模之前运用数据挖掘的方法对原始数据集进行了离群点挖掘与修正;其次,为了验证准确性,将三种方法的预测结果与其他单一、组合模型预测结果进行对比;最后为了验证该模型的有效性、适用性,对特殊日期、天气和其另一组燃气负荷量数据集进行了建模和预测,通过对预测值和实际值的误差分析,实验结果进一步验证了分解-组合模型的适应性和准确性。 There are many forecasting methods in the short-term forecasts of city gas, however, a variety of methods are only suitable for a data set or only applicable in the special case of short-term forecast. In this paper, the authors put forward the idea of short-term forecast for the city gas load decomposition-combination forecasting model on the basis of the analysis of urban gas load data features. At the same time ,put forward three decomposition-combination forecasting model. First of all, before modeling, use data mining outliers mining and correction of the original data set. Secondly, in order to verify the accuracy of the prediction results of the three methods of text that will be submitted and other single combination predicted results were compared. In order to verify the validity and applicability of the model, modeling and forecasting on the special dates and special weather as well as an- other set of gas load data sets. Analysis on the predicted value and the actual value of the error, the experimental results further validate the proposed decomposition-combination of adaptability and accuracy of model.
作者 康琪 林军
出处 《微型机与应用》 2013年第16期93-96,共4页 Microcomputer & Its Applications
基金 上海市科学技术委员会科研计划项目(stcsm20111130)
关键词 城市燃气负荷量 短期负荷预测方法 BP神经网络 差分自回归移动平均模型 小波分频 分解-组合模型 city gas load short-term load forecasting methods BPNN ARIMA wavelet frequency-division decomposition-com-bination forecasting model
  • 相关文献

参考文献4

二级参考文献26

  • 1胡劲松,杨世锡,吴昭同,严拱标.基于EMD和HT的旋转机械振动信号时频分析[J].振动.测试与诊断,2004,24(2):106-110. 被引量:48
  • 2郑天翔,杨力华.经验模式分解算法的探讨和改进[J].中山大学学报(自然科学版),2007,46(1):1-6. 被引量:27
  • 3李燕君,王智,孙优贤.无线传感器网络的链路分析与建模[J].传感技术学报,2007,20(8):1846-1851. 被引量:23
  • 4Huang N E.The empirical mode decomposition and the Hilbert spectrum for nonlinear and nonstationary time analysis[J].Proc.Roy.Soc.,London,1998 (A454):903-995.
  • 5Chen Qiuhui,Huang N,Riemenschneider S.A B-spline approach for empirical mode decompositions[J].Advances in Computational Mathematics,2006(24):171-195.
  • 6Rilling G,Flandrin P,Goncalves P.On empirical mode decomposition and its algorithms[C] ∥ IEEE-EURASIP Workshop on Nonlinear Signal and Image Processing.Grado,Italy:[s.n.] ,2003.
  • 7Kastra M.Forecasting Combining with Neural Netwoirks[J].Forecast.1996,15(1):49-61.
  • 8Xin Yao,ong Liu.New Evolutionary System for Evolving Artificial Neural Networks IEEE.Transactions on Neural Networks[M].1997,8(3):694-714.
  • 9杨健.股票市场基础分析手册[M].中国宇航出版社,2007.
  • 10蔡自兴,徐光祐.人工智能及其应用[M].北京:清华大学出版社,2005.

共引文献35

同被引文献16

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部