期刊文献+

气象环境下的云计算调度算法 被引量:3

Cloud Computing Scheduling Algorithm in Meteorological Environment
下载PDF
导出
摘要 针对气象计算的特点,提出气象计算的云模型,在这个模型之上,提出气象云计算(Weather-Cloud)的启发式调度算法。调度算法对气象作业按照时间紧迫型、CPU紧迫型、内存紧迫型和硬盘空间紧迫型进行分类,计算资源综合紧迫指数,相应地赋予不同调度优先权限。与CMMS(Cloud Min-min Scheduling)、AFCFS(Adaptive First Come First Service)、Fair的调度算法对比表明,Weather-Cloud的调度算法不但减少了计算的等待时间,而且增加了完成的指令数量。 Based on the analysis of the characteristic of meteorological computing, we propose a cloud model for meteorology research and computing. At the same time, a resource schedule method-weather cloud is proposed for the model. In accordance with the time constraints, CPU limit, memory limit, disk space constraints, scheduling algorithm classify the meteorological jobs, computing integrated parameters of resources, corresponding scheduling priority given different jobs. Comparisons are executed to test the performance of our method and other methods. Simulations show that our method not only reduces the waiting time, but also enhance the finished instructions number.
出处 《计算机与现代化》 2013年第11期68-73,共6页 Computer and Modernization
基金 国家自然科学基金资助项目(41005048)
关键词 云计算 调度算法 气象计算 资源调度 cloud computing scheduling algorithm meteorological computing resource schedule
  • 相关文献

参考文献17

  • 1Rodero-Merino L, Caron E, Adrian Muresan, et al. Using clouds to scale grid resources: An economic model [ J ]. Future Generation Computer Systems, 2012,28 (4) : 633- 646.
  • 2Davor Davidovi6, Karolj Skala, Danijel Belu:i6, et al. Grid implementation of the weather research and forecasting model [J]. Earth Science Informatics, 2010,3(4):199-208.
  • 3Michalakes J. MM90: A scalable parallel implementation of the Penn State/NCAR mesoscale model ( MM5 ) [ J ]. Parallel Computing, 1997,23 (14) :2173-2186.
  • 4Zhang H, Liu M, Shi Y, et al. Toward an automated parallel computing environment for geosciences [ J ]. Physics of the Earth and Planetary Interiors, 2007,163 (1-4):2-22.
  • 5Md Rafiqul Islam, Mansura Habiba. Dynamic scheduling approach for data intensive cloud environment [ C ]/! Pro- ceedings of 2012 International of Cloud Computing, Tech- nologies, Applications & Management. 2012:179-185.
  • 6Li Jiayin, Qiu Meikang, Zhong Ming, et al. Online opti- mization for scheduling preemptable tasks on IaaS cloud systems [ J ]. Journal of Parallel and Distributed Compu- ting, 2012,72 (5) : 666-677.
  • 7Imran Maqsood, Muhammad Riaz Khan, Guo H Huang, et al. Application of soft computing models to hourly weather analysis in southern Saskatchewan, Canada[ J]. Engineer-ing Applications of Artificial Intelligence, 2005,18 ( 1 ) : 115-125.
  • 8Lin Chia-feng, Sheu Ruey-kai, Chang Yue-shan, et al. A relaxable service selection algorithm for QoS-based Web service composition[ J]. Information and Software Technol- ogy, 2011, 53(12) :1370-1381.
  • 9Hadhoop. Fair Scheduler Guid[ EB/OL]. http ://archive. cloudera, corn/cdh/3/hadoop/fair _ scheduler, html, 2013- 04434.
  • 10Roberto R Exp6sito, Guillermo L Taboada, Sabela Ramos, et al. Performance analysis of HPC applications in the cloud [ J ]. Future Generation Computer Systems, 2013,29 ( 1 ) :218-229.

二级参考文献28

共引文献24

同被引文献17

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部