期刊文献+

基于时空连续约束的4D脑图像分割模型 被引量:1

4D Brain Image Segmentation Model Based on Spatio-Temporal Information Continuity
下载PDF
导出
摘要 纵向分析脑解剖结构的变化可以预测脑组织的生长或萎缩状态,为临床治疗和科学研究提供必要的依据.但由于成像设备或模式不同以及成像时间间隔较长,3D的分割方法得到的结果无法体现脑组织在时间维上缓慢变化的特征.针对这一问题,提出一种基于时空约束的4D脑图像水平集分割模型.该模型包含了由全局以及局部信息组成的数据拟合项、空间平滑项以及时间平滑项.其中数据拟合项体现了各个时间点的图像灰度信息,空间和时间平滑项则能保证分割结果在时空维上体现其缓慢变化的特性.实验结果表明本文方法既能保证准确的分割结果又能保证空间维以及时间维上的连续性. Longitudinal analysis of brain anatomical change can predict the growth or atrophy of human brain and provide a necessary foundation for clinical medicine application and research.However,due to different imaging machine or model and a long time interval of each image in different time point,the 3D image segmentation method can not provide adequate longitudinal stability of brain tissue variation.In this paper,we propose a 4D brain image level set segmentation model based on spatio-temporal information continuity.This model contain three terms:data term created by global and local information,spatial and temporal smooth term respectively.The data term reflects the intensity information of the image in each time point.The spatial and temporal term can keep the segmentation results smooth variation in these two dimensions.The experiments demonstrate that the proposed method can obtain a temporally consistent and spatially adaptive longitudinal brain image segmentation results.
出处 《电子学报》 EI CAS CSCD 北大核心 2013年第8期1592-1597,共6页 Acta Electronica Sinica
基金 国家自然科学基金(No.61071146 No.61171165 No.61101198) 江苏省自然科学基金(No.SBK201022367 No.BK2012800) 中国博士后基金(No.2012M511281) 江苏省博士后基金(No.1102064C) 江苏省研究生培养创新工程(No.CXZZ11-0259)
关键词 脑MR图像 纵向分割 时空维 brain MR image longitudinal segmentation spatio-temporal dimension
  • 相关文献

参考文献16

  • 1Resnick S M, Goldszal A F, Davatzikos C, Golski S, Kraut M A, Metter E J, Bryan R N, Zonderman A B. One-year age changes in MRI brain volumes in older adults [ J ]. Cerebral Cortex, 2000, 10-5 : 464 - 472.
  • 2Tang Y, Whitman G T, Lopez I, Baloh RW. Brain volume changes on longitudinal magnetic resonance inmging in normal older people [J]. Jotu'nal of Neuroimaging, 2001,11 (4) : 393 --400.
  • 3Freeborough P A, Fox NC. The boundary shift integral : an ac- curate and robust measure of cerebral volume changes from registered repeat MRI [ J ]. IF.F.E Transactions on Medical Imaging, 1997, 16(5) :623 - 629.
  • 4Xue Z, Shen D, Davatzikos C. CLASSIC: Consistent longitudi- nal alignment and segmentation for serial image computing [J]. Neuroimage, 2006,30(2) :388 - 399.
  • 5Osher S , Fedkiw RP. Level set methods and dynamic implicit surfaces [ A]. Applied Mathematical Science [ C ]. New York: Springer, 2003. 253 - 255.
  • 6Tony F Chan, Luminita A Vese. Active contours without edges [ J ]. IEEE Transactions on Image Processing, 2001,10(2) : 266 - 277.
  • 7Sled J G, Zijdenbos A P, Evans AC. A nonparametric method for automatic correction of intensity nonuniformity in MRI data[J]. IEEE Transactions on Medical Imaging, 1998, 17( 1 ) : 87 - 97.
  • 8M Styner, C Brechbohler, G Szkely, G Gerig. Parametric esti- mate of intensity inhomogeneities applied to MRI data [ J ]. IEEE Transactions on Medical Imaging, 2000, 19 ( 3 ) : 1530 - 165.
  • 9W Wells, E Grimson, R Kikinis, F Jolesz. Adaptive segmenta- tion of MRI data [J]. IEEE Transactions on Medical Imaging, 1996, 15(4) :429 - 442.
  • 10L Vese, T Chan. A multiphase level set framework for image segmentation using the Mumford and Shah model [ J]. Interna- tional Journal of Computer Vision, 2002,50(3) : 271 - 293.

二级参考文献11

共引文献16

同被引文献15

  • 1ULLAH H,MARIAMPILLAI A,IKRAM M,et al. Can temporal analysis of optical coherence tomography statistics report on dextrorotatory-glucose levels in blood?[J].Laser Physics,2011,21(11):1962-1971.
  • 2PAUL T U,BANDHYOPADHYAY S K. Segmentation of brain tumor from brain MRI images reintroducing K-means with advanced dual localization method[J].International Journal of Engineering Research and Applications,2012,2(3):226-231.
  • 3WANG Xiao-feng,HUANG De-shuang,XU Huan. An efficient local Chan-Vese model for image segmentation[J].Pattern Recognition,2010,43(3):603-618.
  • 4CONTE D,FOGGIA P,TUFANO F,et al. An enhanced level set algorithm for wrist bone segmentation[J].Image Segmentation,InTech,2011,27(4):293-308.
  • 5ATTIQUE M,GILANIE G,MeEHMOOD M S,et al. Colorization and automated segmentation of human T2 MR brain images for characterization of soft tissues[J].PLoS One,2012,7(3):616-628.
  • 6HUANG Yu,DMOCHOWSKI J P,SU Yu-zhou,et al. Automated MRI segmentation for individualized modeling of current flow in the human head[J].Journal of Neural Engineering,2013,10(6):66004-66016.
  • 7FOUQUIER G,ATIF J,BLOCH I. Sequential model-based segmentation and recognition of image structures driven by visual features and spatial relations[J].Computer Vision and Image Understanding,2012,116(1):146-165.
  • 8ULLAH H,ATIF M,FIRDOUS S,et al. Femtosecond light distribution at skin and liver of rats:analysis for use in optical diagnostics[J].Laser Physics Letters,2010,7(12):889-903.
  • 9HAEGELEN C,COUP P,FONOV V,et al. Automated segmentation of basal ganglia and deep brain structures in MRI of Parkinson’s disease[J].International Journal of Computer Assisted Radiology and Surgery,2013,8(1):99-110.
  • 10王亭,王向阳.基于纹理测度与自适应阈值的FCM图像分割算法[J].小型微型计算机系统,2010,31(6):1209-1212. 被引量:4

引证文献1

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部