期刊文献+

一种具有信息保持能力的GM-PHD滤波器 被引量:8

A Gaussian Mixture PHD Filter with the Capability of Information Hold
下载PDF
导出
摘要 概率假设密度(PHD)滤波器是解决虚警、漏检和目标数未知情况下多目标跟踪问题的新方法.然而在该滤波器中已存在的目标一旦在某个时刻不能被传感器检测到,漏检目标的大量信息会被滤波器丢弃.为解决漏检目标的信息丢失问题,对PHD滤波器的预测和更新方程进行了修正,提出了一种具有信息保持能力的PHD滤波器.在此基础上提出了适用于线性高斯模型的修正PHD滤波器高斯混合(GM)实现算法.仿真实验结果表明,与现有的PHD滤波器相比,在存在漏检的情况下所提出的GM-PHD滤波器能够提供更好的多目标跟踪能力. The probability hypothesis density(PHD)filter has been proved to be an efficient method for the multi-target tracking in the presence of false alarms,missed detections and an unknown number of targets.However,in the original PHD filter,a large amount of information of the existing targets will be immediately discarded by the PHD filter once they cannot be detected by a sensor at a given time.To resolve the information loss problem of missed true targets,we modify the predication and update equations of the PHD filter and propose a modified PHD filter with the capability of information hold.A Gaussian mixture implementation of the modified PHD filter for linear Gaussian models is also presented.The simulation results demonstrate that the proposed filter can achieve better tracking performance of multiple targets than the original PHD filter in the presence of missed detections.
出处 《电子学报》 EI CAS CSCD 北大核心 2013年第8期1603-1608,共6页 Acta Electronica Sinica
基金 国家自然科学基金(No.61271107) 国家科技支撑计划重大项目(No.2011BAH24B12) 广东省自然科学基金(No.S2012010009417) 高等学校博士学科点专项科研基金(No.20104408120001)
关键词 多目标跟踪 概率假设密度滤波器 高斯混合实现 线性高斯模型 multi-target tracking probability hypothesis density filter Gaussian mixture implementation linear Gaussian models
  • 相关文献

参考文献12

  • 1Mahler R. Statistical Multisource-Multitarget Information Fusion [ M]. Artech House, Norwood, MA, 2007 . 565 - 651.
  • 2杨威,付耀文,龙建乾,黎湘.基于有限集统计学理论的目标跟踪技术研究综述[J].电子学报,2012,40(7):1440-1448. 被引量:36
  • 3Mahler R. Multitarget bayes filtering via first-Order multitarget moments[ J]. 1EEE Transactions on Aerospace and Electronic Systems,2003,39(4) : 1152 - 1178.
  • 4Vo B N,Doucet S S. Sequential Monte Carlo methods for mul- ti-target filtering with random finite sets[ J]. 1EEE, Transactions on Aerospace and Electronic Systems, 2005, 41 (4) : 1224 - 1245.
  • 5Ouyang C,et al. Extensions of the SMC-PHD for jump Markov systems[ J]. Signal Processing,2012,92(6) :1422- 1430.
  • 6Vo B N,Ma W K. The Gaussian mixture probability hypothesis density filter[ J]. IEEE Transactions on Signal Processing, 2006,54(11) :4091 - 4014.
  • 7Wang Y, et al. Detection-guided multi-target Bayesian filter [J]. Signal Processing, 2012,92(2):564 - 574.
  • 8欧阳成,姬红兵,田野.一种基于模糊聚类的PHD航迹维持算法[J].电子学报,2012,40(6):1284-1288. 被引量:10
  • 9王品,谢维信,刘宗香,李鹏飞.一种非线性GM-PHD滤波新方法[J].电子学报,2012,40(8):1597-1602. 被引量:14
  • 10Zlaang H J, Jing Z L, Hu S Q. Localization of multiple emitter based on the sequential PHD filter [ J ]. Signal Processing, 2010,90(1) :34-43.

二级参考文献113

共引文献53

同被引文献68

  • 1龙永红.概率论与数理统计[M].北京:高等教育出版社,2000..
  • 2Wang X X, Liang Y, Pan Q, et al.A gaussian approximation recursive filter for nonlinear systems with correlated noises[J]. Automatica, 2012,48 ( 9 ) : 2290 - 2297.
  • 3Arasaramam I, Haykin S. Cubature Kalman filters [ J ]. IEEE Trans Automatic Conlrol,2009,54(6) : 1254 - 1269.
  • 4Ge Q B, Xu D X, Wen C L, Cubature information filters with correlated noises and their applications in decentralized fusion [J]. Signal Processing, 2014,94( 1 ) : 434 - 444.
  • 5Soken H E, Hajiyev C. Pico satellite attitude estimation via ro- bust unscented Kalman filter in the presence of measurement faults [J]. ISA Transactions, 2010,49(3) :249 - 256.
  • 6ZHOU D H,XI Y G, ZHANG Z J.A suboptimal multiple ex- tended Kalman filter [J ]. Chinese J of Automation, 1992, 4 (2) : 145 - 152.
  • 7赵温波,都基焱.组网雷达噪声惯性坐标系误差统计特性研究[J].炮兵学院学报,2010(5):91-95.
  • 8Mahler R. Statistical multisource-multitarget information fusion[M]. Artech House, Norwood, MA, 2007:565-651.
  • 9Mahler R. Multitarget bayes filtering via first-Order multi- target moments[ J]. IEEE Transactions on Aerospace and Electronic Systems, 2003, 39 (4) : 1152-1178.
  • 10Ouyang C, Ji H B, Guo Z Q. Extensions of the SMC- PHD for jump Markov systems [ J ]. Signal Processing, 2012,92(6) : 1422-1430.

引证文献8

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部