期刊文献+

一类非线性扩频序列的构造及其性能分析 被引量:1

Constuction and Analyysis of a Class Non-linear Spread Spectrum Sequence
下载PDF
导出
摘要 基于本原三项式线性函数,构造了一类非线性序列.首先根据非线性序列生成规律,借助逻辑代数理论,推导并提取了非线性序列特征函数,利用特征函数筛分作用,合成了非线性反馈函数,据此实现了非线性序列生成.最后,对该类非线性序列特性进行了分析和计算,并将其应用于直接序列码分多址通信系统(DS-CDMA)仿真实验中,结果表明该类非线性序列不仅具有理想的伪随机特性、良好的线性复杂度,还具有优于m序列、gold序列的误码率. In this thesis, we proposed a method to construct the feedback functions of the nonlinear shift registers based on three items' primary polynomial. First of all, we proved the characteristic state sets of the linear feedback shift registers with the feedback functions of three items' primary polynomial, we extracted its eigenfunction and synthesized the feedback function for the nonlinear shift register. Secondly, we implemented the non-linear feedback shift register on FPGA. Finally, we conducted analyses and calculations for new sequences generated by the nonlinear shift registers and simulated the sequences in direct sequence spread specmarn code division multiple access communication system(DS-CDMA). The results show unanimously that the new sequences dose not only possess ideal pseudorandom property and better linear complexity, but also get lower bit error rate(BER) than m se- quence or gold sequence in the same communication system.
出处 《电子学报》 EI CAS CSCD 北大核心 2013年第10期1939-1943,共5页 Acta Electronica Sinica
基金 国家自然科学基金(No.61071001 No.61372094)
关键词 扩频序列 非线性 本原三项式 反馈函数 镜像 误码率 spread spectrum sequence nonlinear three items' primary polynomial feedback function enanliomorphous bit error rate(BER)
  • 相关文献

参考文献12

  • 1高军涛,胡予濮,李雪莲.自相关性和线性复杂度的关系[J].电子学报,2006,34(8):1401-1404. 被引量:2
  • 2P sol, D Zino view . Low correlation, high nonlinearity se- quences for multiple code CDMA[ J]. IEEE,Trans. Inf. Theo- ry,2006,52(11) :5158 - 5163.
  • 3肖国镇 梁传甲 王育民.伪随机序列及其应用[M].北京:国防工业出版社,1985..
  • 4孙霓刚,胡磊.一类具有极低相关性的CDMA序列[J].电子学报,2010,38(7):1525-1530. 被引量:3
  • 5L R Welch. Lower bounds on the maximum cross correlation of signals[J]. IEEE, Trans. Inform. Theory, 1974, 20(3) : 397 - 399.
  • 6Lv Hong. Design and Implementation of A Maximal LengthNonlinear Pseudorandom Sequence [ A ]. Proceedings of the 2009 International Conference on Computer and Cornmunica- lions Secufity[C] ,Hong Kong, China,2009: 64- 67.
  • 7D V Sarwate. Bounds on crosscorrelation and autocorrelation of sequences[ J]. IEEE Trans. Inform. Theory, 1979,25 (6) : 720 - 724.
  • 8I N Y Yu,G Gong.A new binary sequence family with low cor- relation and large size[ J]. IEEE Trans. Inf. Theory , 2006, 52 (4) : 1624 - 1636.
  • 9X W Ma, Q Y We, T Zhang, et al. New Constructions of Bina- ry Sequences with Good Autocorrelation Based on Interleaving Technique[ J]. IEICE Transaction on Fundamentals of Electron- ic, Communication and Computer Sciences, 2011, E94- A (12) : 1701 - 1705.
  • 10Sarala B, Venkateshwarulu D S.Performance analysis of multi- carder code division multiple access transmission techniques [ A]. Processing of 5th International Conference on Informa- tion, ICIP 2011[C], Belgium,2011:311 - 319.

二级参考文献38

  • 1赵耀东,戚文峰.二元周期序列的k错误线性复杂度[J].电子学报,2005,33(1):12-16. 被引量:5
  • 2M K Simon,J K Omura,R Scholtz,B K Levitt.Spread-Spectrum Communications[M].New York:Computer Science Press,vol.1,1985.
  • 3L R Welch.Lower bounds on the maximum correlation of signals[J].IEEE Trans.Inf.Theory,1974,20(3):397-399.
  • 4S Boztas,P V Kumar.Near optimal sequences for CDMA[A].Proc.1991 IEEE International Symposium on Information Theory[C].New York:IEEE Press,1991.282-282.
  • 5S H Kim,J S No.New families of binary sequences with low correlation[J].IEEE Trans.Inf.Theory,2003,49(11):3059-3065.
  • 6J Lahtonen,S Ling,P Solé,D Zinoviev.Z8-Kerdock codes and pseudorandom binary sequences[J].Joumal of Complexity,2004,20:318-330.
  • 7J S No,S W Golomb,G Gong,H K Lee,P Gaal.Binary pseudorandom sequences of period 2m-1 with ideal autocorrelation[J].IEEE Trans.Inf.Theory,1998,44(2):814-817.
  • 8A G Shanbhag,P V Kumar,T Helleseth.Improved binary codes and sequence families from Z4-linear codes[J].IEEE Trans.Inf.Theory,1996,42(5):1582-1587.
  • 9P solé,D Zinoview.Low-correlation,high-nonlinearity sequences for multiple-code CDMA[J].IEEE Trans.Inf.Theory,2006,52(11):5158-5163.
  • 10P Udaya,M U Siddiqi.Optimal biphase sequences with large linear complexity derived from sequences over Z4[J].IEEE Trans.Inf.Theory,1996,42(1):206-216.

共引文献78

同被引文献7

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部