期刊文献+

油气生产过程综合能耗混合建模方法 被引量:3

Hybrid Modeling Method of Comprehensive Energy Consumption for Oil and Gas Production Process
下载PDF
导出
摘要 为准确预测油气生产过程中的能源消耗,通过对油气生产过程分析,确定了过程的主要能耗指标,提出了一种机理模型与最小二乘支持向量机(LS-SVM)相结合的混合建模方法.通过对油气生产过程及各子过程之间关系的分析,建立了该过程综合能耗的机理模型,并利用LS-SVM对机理模型不能描述的误差特性进行补偿.仿真结果表明,该方法能够准确地预测油气生产过程的综合能耗,其预测性能优于机理模型和LS-SVM构建的数据模型,且具有较好的稳定性和可靠性,将其应用到某采油作业区的实际生产过程,取得了满意的效果. In order to accurately predict the energy consumption in the oil and gas production process, the primary energy consumption indicator was determined through the analysis of the oil and gas production process. A hybrid modeling method was proposed, in which the mechanism model was combined with LS-SVM to predict the comprehensive energy consumption of oil and gas production process. Based on the analysis of the whole production process and the relationship between sub-processes, the mechanistic model of the energy consumption was established, and then LS-SVM was applied to compensate the error which could not be described using the mechanism model. The simulation results showed that the energy consumption of oil and gas production process could be accurately predicted with the proposed method, and the performance was better than those of mechanistic model and the model established by LS-SVM. It could be also concluded that the hybrid model has better stability and reliability. When the model was applied to the actual production process in some oil recovery operation area, satisfactory results could be received.
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2013年第11期1525-1528,共4页 Journal of Northeastern University(Natural Science)
基金 国家自然科学基金资助项目(61034005)
关键词 油气生产 能耗指标 机理模型 最小二乘支持向量机 混合模型 oil and gas production energy consumption indicator mechanism model LS-SVM hybrid model
  • 相关文献

参考文献10

  • 1郑海金,邓吉彬.能耗最低机采系统设计方法的研究及应用[J].石油学报,2007,28(2):129-132. 被引量:36
  • 2董世民,李海琴,闫新明,张胜利.抽油机井系统效率极限值的仿真研究[J].系统仿真学报,2008,20(13):3533-3537. 被引量:13
  • 3Xiao J J, Shonham O, Brill J P, et al. A comprehensive mechanistic model for two-phase flow in pipeline[ C ]//SPE Annual Technical Conference and Exhibition. New Orleans, 1990:23 -26.
  • 4Manzhai V N, Ilyushnikov A V, Gareev M M, et al. Laboratory studies and commercial tests of a polymeric agent for reduction of the power consumption on an oil pipeline [ J ]. Journal of Engineering Physics and Thermo Physics, 1993,21 (5) : 1041 - 1044.
  • 5刘扬,赵洪激,王平.环形掺热水集输系统优化设计及分析[J].石油学报,1999,20(1):77-81. 被引量:16
  • 6Wu Y G. A study on optimal operation and energy saving of super heavy oil pipeline [ C ]//Computer Distributed Control and Intelligent Environmental Monitoring (CDCIEM). Changsha ,2011:400 - 403.
  • 7赵洪激,刘扬,高林森.树状双管掺热水集输系统参数优化技术[J].石油学报,1997,18(1):104-110. 被引量:16
  • 8Cortes C ,Vapnik V. Support-vector net works [ J ]. Machine Learning, 1995,20 ( 3 ) :273 - 297.
  • 9Kim K, Lee J M, Lee I M. A novel multivariate regression approach based on kernel partial least squares with orthogonal signal correction [ J ]. Chemometrics and Intelligent Laboratory Systems,2005,79 ( 2 ) :22 - 30.
  • 10Chen Y, Wen C, Gong Z, et al. Realization of robot motion based on a learning method [ J ] . 1EEE Transactions on Automation Control, 1999,44 (2) :271 - 376.

二级参考文献20

共引文献70

同被引文献56

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部