期刊文献+

纤维素水解液中木糖发酵制丁醇 被引量:2

Butanol production from xylose fermentation in cellulose hydrolysate
下载PDF
导出
摘要 对实验室菌种进行筛选后,得到一株能利用纤维素水解液木糖发酵生产丁醇的菌株。研究发现,该菌株不仅能利用水解液中的葡萄糖,还可以利用水解液中的木糖。对菌种生长特性探索,批式发酵中碳源、氮源以及CaCO3等条件优化后,得到最佳种子培养时间为20~24 h,并确定了木糖浓度为20 g/L的纤维素水解液用于15 L发酵罐实验,在37 ℃静置培养84 h,丁醇产量10.95 g/L,总溶剂16.78 g/L(丙酮、乙醇、丁醇三者之和),木糖利用率达到70%以上,总溶剂转化率为39.4%。解决了纤维素水解液中木糖不能被利用而造成的经济损失问题。 A strain was obtained by screening with which butanol can be fermented by using cellulose hydrolysate. The microorganism not only could use glucose of cellulose hydrolysate,but also could use xylose of cellulose hydrolysate. The growth characteristics,carbon source,nitrogen source and CaCO3 addition in batch fermentation were studied. High concentration glucose and xylose could not be consumed. The optimal concentration of xylose was 20 g/L in batch fermentation. So the initial concentration of xylose in cellulose hydrolysate was 20 g/L with 15 L fermentation reactor,and then cultured for 84 hours at 37 ℃. The yield of butanol was 10.95 g/L,yield of total solvent 16.78 g/L (acetone,ethanol,and butanol),utilization rate of xylose was 70% and total solvent conversion was 39.4%. The economic loss by failure of utilization of xylose in cellulose hydrolysate fermentation was resolved.
出处 《化工进展》 EI CAS CSCD 北大核心 2013年第11期2701-2706,共6页 Chemical Industry and Engineering Progress
基金 国家863计划"项目"(2011AA02A208)
关键词 纤维素水解液 木糖发酵 丙酮丁醇 cellulose hydrolysate xylose fermentation acetone-butanol
  • 相关文献

参考文献8

二级参考文献95

共引文献165

同被引文献50

  • 1李里特——玉米芯里寻“宝”人[J].山西农业(致富科技版),2007(8):12-12. 被引量:1
  • 2Swana J, Yang Y, Behnam M, et al. An analysis of net energy production and feedstock availability for biobutanol and bioethanol[J]. Bioresour. Technol., 2011, 102 (2): 2112-2117.
  • 3Karakashev D , Thomsen A B , Angelidaki I. Anaerobic biotechnological approaches for production of liquid energy carriers frombiomass[J].Biotechnol. Lett., 2007, 29 (7): 1005-1012.
  • 4Jarboe L R, Zhang X, Wang X, et al. Metabolic engineering for production of biorenewable fuels and chemicals: Contributions of synthetic biology[J]. J. Biomed. Biotechnol., 2010, 2010: 761042.
  • 5Jang, Y S, Malaviya A, Cho C, et al. Butanol production from renewable biomass by clostridia[J]. Bioresour. Technol., 2012, 123: 653-663.
  • 6Kumar M, Gayen K. Developments in biobutanol production: New insights[J].Appl.Energ., 2011, 88 (6): 1999-2012.
  • 7Tracy B P, Jones S W, FastA G, et al. Clostridia: The importance of their exceptional substrate and metabolite diversity for biofuel and biorefinery applications[J]. Curn Opin. Biotechnol., 2012, 23 (3): 364-381.
  • 8Garcia V, Pakila J, Ojamo H, et al. Challenges in biobutanol production: How to improve the efficiency?[J] Renew Sust. Energ. Rev., 2011, 15 (2): 964-980.
  • 9Ezeji T, Milne C, Price N D, et al. Achievements and perspectives to overcome the poor solvent resistance in acetone and butanol-producing microorganisms[J]. AppL MicrobioL BiotechnoL , 2010, 85 (6): 1697-1712.
  • 10Wu Y D, Xue C, Chen L J, et al. Effect of zinc supplementation on acetone-butanol-ethanol fermentation by Clostridium acetobutylicum[J]. J. Biotechnol., 2013. 165 ( 1 ): 18-21.

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部