期刊文献+

基于精英协同的混洗差分进化算法及其应用 被引量:1

Shuffled Differential Evolution Algorithm Based on Elite Synergy and Its Application
下载PDF
导出
摘要 提出了基于精英协同的混洗差分进化算法(Shuffled Differential Evolution,SDE)。该算法引入反向学习的初始化机制,并对设置的普通群和虚拟精英群采用不同的差分策略,进而将精英个体作为信息通道实现种群间的信息交流;同时,借助定期混洗机制实现种群间的文化交流,从而达到协同进化的目的;此外,对长期停滞的个体进行跳变操作,以充分挖掘种群的搜索潜能,增强搜索的有效性。通过函数仿真,并与PSO及其它差分进化算法比较,结果表明该算法具有较好的寻优能力。 This paper presents a novel Shuffled Differential Evolution algorithm (SDE)based on elite synergy. The algorithm introduces the initialization mechanism of opposition-based learning, employs different differential strategies fof several ordinary groups and a virtual elite group so as to take the elite individuals as the information channel for achieving information exchange among different groups. Meanwhile, it realizes the inter-cultural exchange among different groups by using a regularly shuffled mechanism which regroups the small groups via hash function, so as to achieve the population co-evolution. In addition, hopping operation on the individuals which are in the long-term stagnation can fully tap the potential of population search and enhance the effectiveness of the search. By the benchmark function experiments, the SDE performs better optimization capability in comparison with the Particle Swarm Optimization and other Differential Evolution algorithms.
出处 《运筹与管理》 CSSCI CSCD 北大核心 2013年第5期17-23,共7页 Operations Research and Management Science
基金 国家自然科学基金资助项目(70971052) 中国博士后基金资助项目(2012M510607)
关键词 最优化理论 差分进化 反向学习机制 协同机制 混洗思想 多种群 连续域问题 optimization theory differential evolution opposition-based learning collaborative mechanism shuffled idea multi-population continuous problem
  • 相关文献

参考文献14

  • 1Storn R, Price K. Differential evolution-a simple and efficient adaptive scheme for global optimization over continuous spaces [ R]. International Computer Science Institute, 1995.
  • 2Storn R, Price K. Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces [ J ]. Journal of Global Optimization, 1997, 11 (4) : 341-359.
  • 3刘波,王凌,金以慧.差分进化算法研究进展[J].控制与决策,2007,22(7):721-729. 被引量:291
  • 4吴亮红,王耀南,袁小芳,周少武.自适应二次变异差分进化算法[J].控制与决策,2006,21(8):898-902. 被引量:80
  • 5Teo J. Exploring dynamic self-adaptive populations in differential evolution[ J]. Soft Computing, 2006, 10 ( 8 ) : 673- 686.
  • 6Rahnamayan S, Tizhoosh H R, Salama M M A. Opposition-based differential evolution[ J]. IEEE Transactions on Evolution- ary Computation, 2008, 12( 1 ) : 64-79.
  • 7Wang Y H, Wang X K, Teng H F. Opposition-based cooperative co-evolutionary differential evolution algorithm with gaussian mutation for simplified satellite module optimization[ J]. Information Technology Journal, 2012, 11 (1) : 67-75.
  • 8刘罡,李元香,郑昊.保存基因的2-Opt一般反向差分演化算法[J].小型微型计算机系统,2012,33(4):789-794. 被引量:6
  • 9Piotrowski A P, Napiorkowski J J, Kiczko A. Differential evolution algorithm with separated groups for multi - dimensional optimization problems[J]. European Journal of Operational Research, 20i2, 216: 33-46.
  • 10Tasgetiren M F, Suganthan P N. A multi-populated differential evolution algorithm for solving constrained optimization problem[ C ].//2006 IEEE Congress on Evolutionary Computation. Vancouver BC, Canada. IEEE, 2006. 33-40.

二级参考文献109

共引文献378

同被引文献7

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部