期刊文献+

基于形态特征提取的图像匹配搜索技术研究 被引量:2

Research on image matching search technology based on morphology characterization extraction
下载PDF
导出
摘要 传统的图像搜索方法一般是由图像处理软件自动抽取图像的颜色、形状、纹理等特征,并以此建立特征索引库,进而由用户输入要查找的物品图像,从而找出与之具有相近特征的图像。而文中给出了从数学形态学的角度来提取图像的关键形态特征,然后建立海量物品图片的形态细化骨架库,并以此简化图像搜索的关键内容,降低数据库存储量,提高匹配效率以及准确性的具体方法。 The traditional image search method is generally performed by image processing software for automatic extraction of image color, shape, texture and other characteristics to establish the feature index database and find out the needed images with similar features according to the sample images users input. A method to extract the key morphological feature according to the mathematical morphology is introduced in this paper, in which the morphological skeleton thinning database of massive goods is established in order to simplify the image search key content, reduce the database storage, and improve the matching efficiency and accuracy.
作者 张华
出处 《物联网技术》 2013年第11期16-18,22,共4页 Internet of things technologies
关键词 数学形态 特征提取 骨骼细化 图像搜索 mathematics morphology characterization extraction skeleton thinning image search
  • 相关文献

参考文献5

二级参考文献54

  • 1林诚凯,李惠,潘金贵.一种全景图生成的改进算法[J].计算机工程与应用,2004,40(35):69-71. 被引量:7
  • 2宋立强,许强.基于μC/OSII的图形界面系统的设计与应用[J].微计算机信息,2005,21(4):129-131. 被引量:3
  • 3Yilmaz O Z. Seismic Data Analysis[M]. USA:Soci- ety of Exploration Geophysicists, 2001:127-132.
  • 4Mallat S. A Theory for Multi Resolution Signal De- composition: the Wavelet Representation[J]. IEEE Trnas on PAMI,1989,11(7)..674-693.
  • 5Goutaias, H J A M. Heijmans. Multiresolution Sig- nal Decomposition Schemes. Part2.. Morphological Wavelets[J]. IEEE Transactions on Image Process- ing,2000,9(ll)..1 877-1 896.
  • 6Allan G H, Serar J. Morphological Operators on the Unit Circle[J]. IEEE Transactions on Image Processing, 2001,10(12) : 291-233.
  • 7Gregory B, Anthony V. Wavelet Transforms Compression of Seismic Data. Tech. Report[R]. Mathematical Geophisics Summer School at Stan- ford, 1998.
  • 8Reichel J. Integer Wavelet Transform for Embedded Lossy to Lossless Image Compression [J]. IEEE Trans. Image Processing,2001,10(6) :383-392.
  • 9Li Fe;petxg, Ma Guoru, Qin Qianqing, et al. Prior Imporession [C]. SPIE Proceedings, Multispectral Image Pro- cessing and Pattern Recognition, Beijing, 2003rtant Band Hyper-zpectral Image Comp.
  • 10Heijmans H J A M, Boutsias J. Constructing Morpho- logical Wavelets with the Lifting Scheme [C]. The Fifth International Conference on Pattern Recognitionand Information Processing ( PRIP' 99 ) Minsk, Bela- rus, 1999.

共引文献144

同被引文献30

引证文献2

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部