期刊文献+

射频空心阴极等离子体放电气体分布的有限元模拟

FEM Simulation of Discharge Gas Distribution of Radio Frequency Hollow Cathode Plasma
下载PDF
导出
摘要 为了得到较为优化的射频空心阴极等离子体放电参数,提高放电气体分布的均匀性,以改善材料表面改性的均匀性,构建了射频空心阴极等离子体放电气体流动的数学模型,应用Fluent软件对放电气体分布进行有限元模拟,得出了较为优化的放电参数;另选择一组放电参数对电池隔膜进行表面改性试验,通过测试电池隔膜的最大吸碱量,得出较优的放电参数。结果表明:试验优选放电参数和模拟所得出的优选放电参数较为吻合,证明了有限元模拟的可行性与实用性;得出的较优放电参数是阳极孔径为8mm,进气流量为5L·min-1,试样距离为20mm。 To obtain the optimum parameters of the radio frequency (RF) hollow cathode plasma parameters and develop the uniform of the discharge gas distribution, and then improve the uniform of modified material surface, the mathematical model of discharge gas flow of RF hollow cathode plasma was constructed. Applying the Fluent software to simulate the discharge gas distribution, and obtained the optimum discharge gas parameters. The surface modification experiment of battery separator was tested using the selected parameters, the optimum discharge parameters were obtained by testing the maximum alkali absorption quantity of battery separator. The results show that the discharge parameters obtained by experiment were well with the simulated ones, this could prove that the finite element model simulation was feasible and efficient. The optimum discharge parameters was anode aperture of 8 mm, intake air flow rate of 5 L . min--1 and sample position of 20 mm.
出处 《机械工程材料》 CAS CSCD 北大核心 2013年第11期101-106,共6页 Materials For Mechanical Engineering
基金 科技部2010年科研院所技术开发研究专项资助项目(2010EG111015) 2012年江苏省"青蓝工程"中青年学术带头人资助项目
关键词 射频空心阴极等离子体 放电气体分布 有限元模拟 radio frequency hollow cathode plasma discharge gas distribution finite element model (FEM)simulatiorL
  • 相关文献

参考文献10

  • 1KORZEC D, ENGEMANN J. MuhiOet hollow cathode dis charge {or remote polymer deposition[J]. Surface and Coatings Technology, 1997,93 : 128-133.
  • 2BARDOS L. Radio frequency hollow cathodes for the plasma processing technology[J]. Surface and Coatings Technology, 1996,86/87: 648-656.
  • 3BARANKOVA H, BAROOS L. Hollow cathode cold atmo- sphereic plasma source with monoatomic and molecular gases [J]. Surface and Coatings Technology, 2003, 163/164:649 -653.
  • 4ZHANG Da, MARK J, KUSHNER. Optimization of plasma uniformity using hollow cathode structure in RF discharges[C]// 51th Gaseous Electronics Conference & 4th Interna- tional Conference on Reactive Plasmas. Maul, Hawai: [s. n.],1998.
  • 5冯煜东,王艺,王志民,速小梅,赵慨.多靶连续卷绕镀膜机溅射室布气均匀性研究[J].真空科学与技术学报,2006,26(z1):40-43. 被引量:2
  • 6NADDAF M, SALOUM S, ALKHALED B. Atomic oxygen in remote plasma of radio frequency hollow cathode discharge source[J]. Vaceum, 2010,8 : 4-12.
  • 7NINGEL K P, THEIRICH D, ENGEMANN J. Characteri zing the remote plasma polymerization of octafluorocyclobu tane induced by RF driven hollow-cathode diseharge[J]. Sur- face and Coatings Technology, 1998,98 : 1142- 1147.
  • 8力伯曼迈克尔A,里登伯格阿伦J.等离子体放电原理与材料处理[M].北京:科学出版社,2007.
  • 9姚征,陈康民.CFD通用软件综述[J].上海理工大学学报,2002,24(2):137-144. 被引量:212
  • 10温贻芳,陈新,王士喜,芮延年,王红卫.空心阴极远区等离子体接枝聚合表面改性丙纶无纺布的吸碱性能[J].机械工程材料,2011,35(8):70-74. 被引量:4

二级参考文献47

  • 1刘波,王红卫.碱性电池隔膜用丙纶非织造布的等离子体改性[J].合成纤维工业,2005,28(4):30-32. 被引量:7
  • 2[1]Harten A.High resolution scheme for hyperbolic system of conservation law[J].J Comp Phys,1983,(49): 357~393.
  • 3[2]Sweby P K.High resolution schemes using flux limiters for hyperbolic conservation laws[J].SIAM J Num Anal,1984,21: 995~1 011.
  • 4[3]Yee H C.Construction of explicit and implicit symmetric TVD scheme and their applications[J].J Comp Phys,1987,(68): 151~179.
  • 5[4]Steger J L,Warming R F.Flux vector splitting of the inviscid gasdynamic equations with application to finite difference methods[J].J Comp Phys,1981,(40): 263~293.
  • 6[5]Chakravarthy S R.The split-coefficient matrix method for hyperbolic system of gas dynamics equations[A].AIAA Paper[C],80-268,1980.
  • 7[6]Roe P L.Approximate Riemann solvers,parameter vectors and different schemes[J].J Comp Phys,1981,(43): 357~372.
  • 8[7]Van Leer B.Towards the ultimate conservative diffe-rence scheme V: A second order sequal to Godunov's method[J].J Comp Phys,1979,(32): 101~136.
  • 9[8]Jameson A,Schmidt W,Turkel E.Numerical solution of the Euler equation by finite volume methods with Runge-Kutta time stepping schemes[A].AIAA Paper [C],81-1259,1981.
  • 10[9]Ni R H.A Multiple grid scheme for solving the Euler equation[J].J AIAA,1982,20: 1 565~1 571.

共引文献215

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部