期刊文献+

一种基于SVM的改进车牌识别算法 被引量:14

An Improved Method of Car License Plate Recognition Based on SVM
下载PDF
导出
摘要 提出了一种基于支持向量机(SVM)的改进车牌识别方法。对细化处理后的字符采用网格、水平投影与垂直投影密度的特征提取方法,保证了字符整体与局部特征,同时也使特征向量集的维数充分低。结合3种特征提取方法得到的特征向量集,采用SVM进行车牌号码识别。对于易混淆字符,提出了根据各自的特征进行2次识别的算法,该算法有效解决了易混淆字符误识别的问题。实验结果表明,该算法鲁棒性好、抗干扰能力强、识别率达到了98.58%。 An improved recognition method of license plate based on support vector machine (SVM) is pro- posed in this paper. The features of grid, horizontal projection and vertical projection density are extracted after char- acter thinning treatment. The feature vector set of three features has overall and local features of the characters, and low dimension. Based on SVM, plate numbers are recognized through feature vector sets. For confusing characters, a second recognition algorithm is put forward according to their respective features, which solves the problem of confus- ed character recognition efficiently. Experiment results show that the algorithm has good robustness, strong anti-jam- ming ability, and a high recognition rate to 98.58%.
出处 《电子科技》 2013年第11期22-25,共4页 Electronic Science and Technology
关键词 车牌识别 SVM 特征向量 网格 投影 细化 license plate recognition SVM feature vector grid projection thin
  • 相关文献

参考文献5

二级参考文献57

共引文献54

同被引文献103

  • 1孙钦东,张德运,高鹏.基于时间序列分析的分布式拒绝服务攻击检测[J].计算机学报,2005,28(5):767-773. 被引量:55
  • 2卢达,浦炜,陈琦玮,谢铭培.基于神经网络和模糊匹配算法的手写汉字预分类研究[J].计算机应用,2005,25(10):2418-2421. 被引量:2
  • 3朱双东,刘兰兰,陆晓峰.一种用于道路交通标志识别的颜色—几何模型[J].仪器仪表学报,2007,28(5):956-960. 被引量:23
  • 4田有文,李天来,李成华,朴在林,孙国凯,王滨.基于支持向量机的葡萄病害图像识别方法[J].农业工程学报,2007,23(6):175-180. 被引量:84
  • 5Dollatr P, Wojek C, Schiele B,et al. Pedestrian detection: Anevaluation of the state of the art [J]. IEEE Transaction on Pattern Analysis and Machine Intelligence,2012,34 (4): 743-761.
  • 6Dalai N,Triggs B. Histograms of Oriented Gradients for Human Detection [C]//Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Diego, CA, USA,2005:886-893.
  • 7Viola P,Jones M J,Snow D. Detecting pedestrians using patterns of motion and appearance[J]. International Journal of Computer Vision, 2005,63 (2): 153 - 161.
  • 8Zhu Qiang,Avidan S,Yeh M C,et al. Fast human detection using a cascade of histograms of oriented gradients [C]// Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. New York, NY, USA, 2006: 1491-1498.
  • 9Lowe D G. Distinctive Image Features from Scale-Invariant Key points [J]. International Journal of Computer Vision, 2004,60(2): 91-110.
  • 10Mu Y,Yan S,Liu Y,et al. Discriminative local binary patterns for human detection in personal album[C]//Proceedings of the 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Anchorage, AK,2008:1-8.

引证文献14

二级引证文献51

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部