期刊文献+

微波馈入位置对固体催化剂加热效果的影响 被引量:2

The Effects of Microwave Feed-in Positions on its Heating Performance of Solid Catalysts
下载PDF
导出
摘要 本研究考察了微波从底部馈入反应器和从侧面馈入反应器时对固体催化剂的加热效果。从微波介电加热和热传导的物理规律出发,建立了两种不同微波馈入位置时对催化剂床层加热的模型,并通过COMSOL Multiphysics软件模拟分析其对加热效果的影响。结果表明:当采用底部馈入方式进行加热时,电磁场强度在下部分布较强很高,但在距离馈入口较远的区域电磁场强度较低,最终得到的温度分布均匀性较差;当采用微波从侧面馈入的方式进行加热时,催化剂床层区域的电场强度较大,且温度分布比较均匀。 Microwave heating performance of solid catalyst was investigated by using two microwave feed-in positions. Two kinds of microwave heating models were conducted based on the physical laws of microwave heating and heat transfer. The effects of both modes were analyzed through COMSOL Mul- tiphysicssoftware. It was found that the electromagnetic field (EM) strength is higher near the feeding point if microwave equipped through the bottom of the reactor, but lower at the region in the far distance from the feeding point. The temperature distribution within the solid catalysts is found non-uniformly. If microwave was introduced directly through the side of the reactor, the heating area and the EM strength can be enhanced and the distribution is much more uniform.
出处 《真空电子技术》 2013年第5期49-52,共4页 Vacuum Electronics
基金 中国石油大学(北京)基金(KYJJ2012-03-01) 国家自然科学基金面上项目(21076230和21176256)
关键词 微波加热 COMSOL 电磁场模拟 Microwave heating, COMSOL, Electromagnetic simulation
  • 相关文献

参考文献14

  • 1Jones D A, Lelyveld T P, Mavrofidis S D, etal. Micro wave Heating Applications in Enviromnental Engineer ing-a Review[J]. Resources Conservation and Recy cling, 2002, 34(2):75-90.
  • 2Yoshikawa N, Ishizuka E, Mashiko K,et al. Brief Review on Microwave (MW) Heating, its Application to Iron ga Steel Industry and to the Relevant Environmental Tech- niques[J]. Isij International, 2007, 47(4):523-527.
  • 3张天琦,崔献奎,张兆镗.微波加热原理、特性和技术优势[J].筑路机械与施工机械化,2008,25(7):9-14. 被引量:33
  • 4吴智慧.高频介质加热技术在木材工业中的应用[J].世界林业研究,1994,7(6):30-36. 被引量:74
  • 5Gedye R, Smith F, Westaway K, etal. The Use of Mi- crowave Ovens for Rapid Organic Synthesis[J]. Tetra- hedron Letters, 1986, 27(3) :279-282.
  • 6Larhed M, Moberg C,Hallberg A. Microwave-Acceler- ated Homogeneous Catalysis in Organic Chemistry[J]. 2002, 35:717-727.
  • 7Kappe C O. Controlled Microwave Heating in Modern Organic Synthesis[J]. Angewandte Chemic-Internation- al Edition, 2004, 43:6250-6284.
  • 8Xu C, Jun S, Yang X, et al. Study on Chemical Non- polar Solvent Heating by Microwave[J]. Asian Journal of Chemistry, 2013, 25(5) :2693-2695.
  • 9Wen Z, Yang J, Xu X, et al. Removal of Nickel and Vanadium from Crude Oil by Microwave-Chemical Method I Chemical Method[J]. Petroleum Science and Technology, 2013, 31(9) :991-999.
  • 10赵俊蔚,赵国惠,郑晔,邢志军,马金瑞.微波加热在矿冶方面的应用研究现状[J].黄金,2008,29(12):39-43. 被引量:16

二级参考文献15

  • 1彭金辉,郭胜惠,张世敏,朱艳丽.微波加热干燥钛精矿研究[J].昆明理工大学学报(理工版),2004,29(4):5-9. 被引量:16
  • 2陈津,刘浏,曾加庆,任瑞刚,刘金营.微波加热还原含碳铁矿粉试验研究[J].钢铁,2004,39(6):1-5. 被引量:62
  • 3张青哲,贾国华,王亚兵.微波加热技术在沥青加热系统中的应用初探[J].筑路机械与施工机械化,2006,23(1):5-7. 被引量:15
  • 4周云,彭开玉,王世俊,李辽沙,王海川,董元篪.含锌冶金尘泥在微波场中的升温特性[J].钢铁研究,2006,34(2):58-60. 被引量:7
  • 5高子渝,焦生杰.微波加热旧沥青混合料的应用研究[J].筑路机械与施工机械化,2006,23(10):29-31. 被引量:16
  • 6P A Olubambi , J H Potgieter , J Y Hwang , et al. Influence of microwave heating on the processing and dissolution behaviour of low - grade complex sulphide ores[ J]. Hydrometallurgy, 2007 ( 89 ) : 127 - 135.
  • 7B Nanthakumar, C A Pickles, S Kelebek. Microwave pretreatment of a double refractory gold ore[ J]. Minerals Engineering, 2007 ( 20 ) : 1 109-1 119.
  • 8S W Kingman, K Jackson, S M Bradshaw, et al. An investigation into the influence of microwave treatment on mineral ore comminution[ J]. Powder technology. 2004,9 : 176 - 184.
  • 9G Scott, S M Bradshaw, J J Eksteen. The effect of microwave pretreatment on the liberation of a copper carbonatite ore after milling [J]. Int J Miner. Process, 2008(85) :121 - 128.
  • 10D A Jones , S W Kingrnan, D N Whittles, et al, The influence of microwave energy delivery method on strength reduction in ore sampies[ J]. Chemical Engineering and Processing, 2007 (46) : 291 - 299.

共引文献120

同被引文献42

  • 1牟群英,李贤军.微波加热技术的应用与研究进展[J].物理,2004,33(6):438-442. 被引量:97
  • 2李明川,樊栓狮.多孔介质中冰成天然气水合物形成实验研究[J].海洋石油,2007,27(1):11-13. 被引量:7
  • 3Huang D Z, Fan S S. Measuring and modeling thermal conductivity of gas hydrate-bearing sand [ J ]. Journal of Geophysical Research, 2010, 110( BI ) : B01311.
  • 4Laura A S, Kirby S H, Durham W B, et al. Peculiarities of methane clathrate hydrate formation and solid state deformation including possible superheating of water ice [ J 1. Science, 1996, 273 (5283) : 1843 - 1848.
  • 5Staykova D K, Kuhs W F, Salamatin A N, et al. Formation of porous gas hydrates from ice powders : diffraction experiments and multistage model [ J ]. Journal of Physical Chemistry B, 2003, 107(37) : 10299 - 10311.
  • 6Kneafsey T J. Examination of hydrate formation methods: trying to create representative samples [ EB/OL]. California: Lawrence Berkeley National Laboratory, 2010 [ 2012 - 08 - 06 ] http ://escholarship. org/uc/item/7 v23 q5 mw.
  • 7Ecker C. Seismic characterization of methane hydrate structures [ D ]. Stanford : Stanford University, 1998.
  • 8Choi J H, Dai S, Cha J H. Laboratory formation of noncementing hydrates in sandy sediments [ J ]. Geochemistry Geophysics Geosystems, 2004, 15(4) : 1648 - 1656.
  • 9Amszkiewicz M, Koziol A, Lupinska A, et al. Microwave drying of various shape particles suspended in an air stream [ J ]. Transport in Porous Media, 2007, 66( 1 ) : 173 -186.
  • 10沈致远.微波加热原理与和应用[J].今日科技,1975(12):6-14.

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部