期刊文献+

无线传感器网络中基于树的能量高效分布式精确数据收集算法 被引量:5

A Distributed Tree-Based Energy-Efficient Algorithm for Precise Data Gathering in Wireless Sensor Networks
下载PDF
导出
摘要 在大规模节点密集的多跳传感器网络中,精确数据收集存在着/热区0问题:越靠近Sink节点的传感器节点,其承担的数据转发量就越多,能量消耗也越快,从而成为瓶颈节点,缩短整个网络的生命周期.最大生命周期数据收集树的构建已被证明是NP完全问题.已有算法大多是集中式算法,不适用于大规模节点密集的传感器网络.本文提出一种分布式精确数据收集算法EEDAT,在大规模节点密集的传感器网络中,不仅能够保证每个节点到Sink的路径是最短路径(最少跳数),而且能有效延长网络生命周期.EEDAT分为两个基本步骤,首先随机生成一棵数据收集树,然后根据各个传感器节点的孩子数和剩余能量,对已生成的数据收集树进行调整,使得各个节点的负载尽量均衡,从而达到延长网络生命周期的目的.实验结果表明,与已有分布式算法LMST相比,EEDAT所构造的数据收集树能延长网络生命周期平均20%. In this paper, we propose a distributed tree-based algorithm for precise data gathering in wireless sensor networks called EEDAT, which achieves longer network lifetime than existing distributed algorithms. The EEDAT algorithm has two steps. In the first step,a shortest path tree is constructed in a distributed manner. In the second step, EEDAT adjusts the load of nodes in the generated tree to balance energy consumption of different nodes, which effectively extends the lifedme of the network. In the adjust- ment, both the number of children of a node and its residual energy are considered. Simulation results show that EEDAT achieves longer lifetime than the LMST algorithm. On average,compared with LMST,EEDAT prolongs the lifetime by 20%.
出处 《电子学报》 EI CAS CSCD 北大核心 2013年第9期1738-1743,共6页 Acta Electronica Sinica
基金 国家自然科学基金面上项目(No.61173169) 国家自然科学基金青年项目(No.61103203 No.61204294) 国家自然科学基金重点项目(No.61232001)
关键词 无线传感器网络 数据收集 数据收集生成树 wireless sensor networks data gathering spanning tree
  • 相关文献

参考文献2

二级参考文献11

  • 1张卿,谢志鹏,凌波,孙未未,施伯乐.一种传感器网络最大化生命周期数据收集算法(英文)[J].软件学报,2005,16(11):1946-1957. 被引量:18
  • 2TAN H, KORPEOGLU I. Power efficient data gathering and aggregation in wireless sensor networks[ A ]. Proc. ACM SIGMOD Record[ C] .New York USA:ACM NY,2003.66 - 71.
  • 3Liang Wei-fa, Liu Yu-zhen. Online data gathering for maximizing network lifetime in sensor networks [ J ].IEEE Transaction on Mobile Computing,2007,6( 1 ) :2 - 11.
  • 4Wu Yan,Sonia F,Ness S.On the construction of a maximumlifetime data gathering tree in sensor networks: NP-completeness and approximation algorithm [ A ]. Proc The IEEE 27th Conference on Computer Communications (INFOCOM2008) [C ]. Washington, DC, USA: IEEE Computer Society, 2008. 356 - 360.
  • 5Kwon S, Kim J, Kim C. An efficient tree structure for delay sensitive data gathering in wireless sensor networks [ A ]. Proc The IEEE 22nd International Conference on Advanced Information Networking and Applications[ C ]. Washington, DC, USA: IEEE Computer Society, 2008.738 - 743.
  • 6Buragohain C, Agrawal D,Suri S. Power aware muting for sensor databases[ A]. Proc The IEEE 24th Conference on Computer Communications ( INFOCOM2005 ) [ C ]. Washington, DC, USA: IEEE Computer Society,2005. 1747 - 1757.
  • 7Thomas C, Chomas L, Ronald R, et al. Introduction to Algorithms[ M]. Cambridge: MIT Press,2001.25 - 28.
  • 8Vivek M, Catherine R. Design guidelines for wireless sensor networks: communication, clustering and aggregation [ J ]. Ad Hoc Network Journal,2004,2( 1 ) :45 - 63.
  • 9Bougard B, Catthoor F, Daly C, et al. Energy efficiency of the IEEE 802.15.4 standard in dense wireless micro-sensor networks: modeling and improvement perspectives [ A ]. Proc IEEE Design,Automation and Test in Europe Conference and Exhibition[ C ]. Washington, DC, USA: IEEE Computer Society,2005. 196 - 201.
  • 10蔚赵春,周水庚,关佶红.无线传感器网络中数据存储与访问研究进展[J].电子学报,2008,36(10):2001-2010. 被引量:33

共引文献25

同被引文献85

  • 1洪锋,褚红伟,金宗科,单体江,郭忠文.无线传感器网络应用系统最新进展综述[J].计算机研究与发展,2010,47(S2):81-87. 被引量:76
  • 2Noury N,Hervé T,Rialle V,et al.Monitoring behavior in home using a smart fall sensor and position sensors[A].2000 1st Annual International,Conference On Microtechnologies in Medicine and Biology[C].Piscataway,NJ:IEEE,2000.607-610.
  • 3Agrawal S,Deb S,Naidu K V M,et al.Efficient detection of distributed constraint violations[A].2007 23rd IEEE Intemational Conference on Data Engineering[C].Piscataway,NJ:IEEE,2007.1320-1324.
  • 4Sharfman I,Schuster A,Keren D.A geometric approach to monitoring threshold functions over distributed data streams[J].ACM Transactions on Database Systems,2007,32(4):23.
  • 5Kashyap S,Ramamirtham J,Rastogi R,et al.Efficient constraint monitoring using adaptive thresholds[A].2008 24th International Conference on Data Engineering[C].Piscataway,NJ:IEEE,2008.526-535.
  • 6Dilman M,Raz D.Efficient reactive monitoring[J].IEEE Journal on Selected Areas in Communications,2002,20(4):668-676.
  • 7Cormode G,Muthukrishnan S,Yi K.Algorithms for distributed functional monitoring[J].ACM Transactions on Algorithms,2011,7(2):21-40.
  • 8Cheng R,Kalashnikov D V,Prabhakar S.Evaluating probabilistic queries over imprecise data[A].Proceedings of the 2003 ACM SIGMOD International Conference on Management of data[C].New York:ACM,2003.551-562.
  • 9Deshpande A,Guestrin C,Madden S R,et al.Model-driven data acquisition in sensor networks[A].Proceedings of the 30th International Conference on Very Large Data bases[C].San Francisco:Morgan Kaufmann,2004.588-599.
  • 10Gruenwald L,Chok H,Aboukhamis M.Using data mining to estimate missing sensor data[A].2007 7th IEEE International Conference on Data Mining Workshops[C].Piscataway,NJ:IEEE,2007.207-212.

引证文献5

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部