期刊文献+

基于Hadoop的贝叶斯过滤MapReduce模型 被引量:3

Hadoop-based MapReduce Model of Bayesian Filtering
下载PDF
导出
摘要 传统分布式大型邮件系统对海量邮件的过滤存在编程难、效率低、前期训练耗用资源大等缺点,为此,对传统贝叶斯过滤算法进行并行化改进,利用云计算MapReduce模型在海量数据处理方面的优势,设计一种基于Hadoop开源云架构的贝叶斯邮件过滤MapReduce模型,优化邮件的训练和过滤过程。实验结果表明,与传统分布式计算模型相比,该模型在召回率、查准率和精确率方面性能较好,同时可降低邮件过滤成本,提高系统执行效率。 There are some disadvantages of mass mail filtering for large mail systems on the traditional distributed system including programming difficulties, low efficiency, mass system and network resources consumed. Taking advantage of the high performance of the cloud computing in processing data processing effectively, a MapReduce model of Bayesian mail filtering based on Hadoop is proposed. It improves the traditional Bayesian filtering algorithms and optimizes the mail training and filtering processes. Experimental results show that, compared with traditional distributed computing model, the Hadoop-based MapReduce model of Bayesian anti-spam mail filtering performs better in recall, precision and accuracy, reduces the cost of mail learning and classifying and improves the system efficiency.
出处 《计算机工程》 CAS CSCD 2013年第11期57-60,64,共5页 Computer Engineering
基金 国家"863"计划基金资助项目(2009AA044601) 国家自然科学基金资助重点项目(61139002) 南京航空航天大学基本科研业务费专项基金资助项目(NS2010230)
关键词 云计算 MAPREDUCE模型 Hadoop架构 贝叶斯算法 垃圾邮件 反垃圾邮件过滤 cloud computing MapReduce model Hadoop framework Bayesian algorithm spam mail anti-spam mail filtering
  • 相关文献

参考文献47

二级参考文献62

共引文献112

同被引文献23

  • 1张铭锋,李云春,李巍.垃圾邮件过滤的贝叶斯方法综述[J].计算机应用研究,2005,22(8):14-19. 被引量:23
  • 2袁方,苑俊英.基于类别核心词的朴素贝叶斯中文文本分类[J].山东大学学报(理学版),2006,41(3):111-114. 被引量:12
  • 3张玉芳,彭时名,吕佳.基于文本分类TFIDF方法的改进与应用[J].计算机工程,2006,32(19):76-78. 被引量:121
  • 4DEAN J, GHEMAWAT S. MapReduce: simplified data processing on large clusters[J]. Communications Of The ACM, 2008,51 (1): 107-113.
  • 5APACHE HADOOP. Hadoop[EB/OL]. http://hadoop, apache. org.
  • 6ZHUOBO RONG. Complex statistical analysis of big data, imple- mentation and application of apriori and FP-Growth algorithm based on MapReduceEC]. Proceedings of 2013 4th IEEE Interna- tional Conference on Software Engineering and Service Science (IC- SESS), Beijing, IEEE, 2013:968-972.
  • 7邓甦,付长贺.四种贝叶斯分类器及其比较[J].沈阳师范大学学报(自然科学版),2008,26(1):31-33. 被引量:8
  • 8Pang-Ning Tan, Michael Steinbach, Vipin Kumar.数据挖掘导论(中文版)[M].范明,范宏建,等,译.北京:人民邮电出版社,2011:139-141.
  • 9Buades A, Coil B, Morel J M. A non-local algorithm for image denoising[ C]//IEEE Computer Society Conference on Com- puter Vision and Pattern Recognition. 2005:60 -65.
  • 10Wegener D, Mock M, Adranale D, et al. Toolkit-based high- performance data mining of large data on mapreduce clusters [ C ]//IEEE International Conference on Data Mining Work- shops. 2009:296 -301.

引证文献3

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部