期刊文献+

一种有监督的线性降维人脸识别算法 被引量:1

A Supervised Linear Dimensionality Reduction Algorithm for Face Recognition
下载PDF
导出
摘要 保局投影(LPP)忽略了数据的类别标记信息且鲁棒性较差,为此,提出一种线性判别投影(LDP)算法。引入类间权重矩阵和类内权重矩阵,使各流形间的分离性最大,局部子流形的内在紧致性最小,同时通过一种鲁棒的类内处理方式使算法对outlier数据具有鲁棒性。在ORL、AR和Extended Yale B人脸数据集上进行实验,结果表明,与PCA、LDA、LPP、LSDA和LPDP算法相比,该算法的最佳平均识别率较高,分别可达95.3%、93.64%和96.28%,证明了算法的有效性和可靠性。 Because Locality Preserving Projection(LPP) ignores the label information of the data and it is lack of robustness, this paper proposes a Linear Discriminant Projection(LDP) algorithm. By introducing between-class weight matrix and within-class weight matrix, LDP maximizes the separability of different submanifolds and minimizes the compactness of local submanifolds. Moreover, LDP is robust to outlier data by a robust within-class processing way. Compared with PCA, LDA, LPP, LSDA, LPDP, the experimental results on ORL, AR and Extended Yale B face databases show that the best average recognition rates of LDP are higher, which can reach 95.3%, 93.64% and 96.28%, and this verifies the efficiency of the proposed algorithm.
出处 《计算机工程》 CAS CSCD 2013年第11期169-173,共5页 Computer Engineering
基金 国家自然科学基金资助项目(61170109 61100119 11001247) 浙江省科技厅基金资助项目(2012C21021)
关键词 降维 流形学习 判别投影 有监督学习 保局投影 线性判别分析 dfmensionality reduction manifold learning discriminant projection supervised learning Locality Preserving Projection(LPP) Linear Discriminant Analysis(LDA)
  • 相关文献

参考文献16

  • 1Jain A K, Duin R P W, Mao J C. Statistical Pattern Recognition: A Review[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(1): 4-37.
  • 2Turk M, Pentland A. Eigenface for Recognition[J]. Journal of Cognitive Neuoscience, 1991, 3(1): 71-86.
  • 3Belhumeur P N, Hespanha J P, Kriegman D J. Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Pro- jection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(7): 711-720.
  • 4Li Haifeng, Jiang Tao, Zhang Keshu. Ef?cient and Robust Feature Extraction by Maximum Margin Criterion[J]. IEEE Transactions on Neural Networks, 2006, 17(1): 157-165.
  • 5Roweis S, Saul L. Nonlinear Dimensionality Reduction by Locally Linear Embedding[J]. Science, 2000, 290(5500): 2323-2326.
  • 6Tenenbaum J B, de Silva V, Langford J C. A Global Geometric Framework for Nonlinear Dimensionality Reduction[J]. Science, 2000, 290(5500): 2319-2323.
  • 7Belkin M, Niyogi P. Laplacian Eigenmaps for Dimensionality Reduction and Data Representaiton[J]. Neural Computation, 2003, 15(6): 1373-1396.
  • 8He Xiaofei, Niyogi P. Locality Preserving Projections[C]//Proc. of NIPS’03. Vancouver, Canada: [s. n.], 2003.
  • 9He Xiaofei, Cai Deng, Yan Shuicheng, et al. Neighborhood Preserving Embedding[C]//Proc. of ICCV’05. Beijing, China: [s. n.], 2005.
  • 10Gui Jie, Jia Wei, Zhu Ling, et al. Locality Preserving Dis- criminant Projections for Face and Palmprint Recognition[J]. Neurocomputing, 2010, 73(13/15): 2696-2707.

二级参考文献61

  • 1杨健,杨静宇,叶晖.Fisher线性鉴别分析的理论研究及其应用[J].自动化学报,2003,29(4):481-493. 被引量:97
  • 2Duda RO, Hart PE, Stork DG. Pattern Classification. 2nd ed., New York: John Wiley & Sons, 2001.
  • 3Turk MA, Pentland AP. Face recognition using eigenfaces. In: Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition. Madison: IEEE Computer Society, 1991. 586-591.
  • 4Martinez AM, Kak AC. PCA Versus LDA. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2001,23(2):228-233.
  • 5Zhu XJ. Semi-Supervised learning literature survey. Technical Report, 1530, Department of Computer Sciences, University of Wisconsin at Madison, 2006. http://www.cs.wisc.edu/-jerryzhu/pub/ssl_survey.pdf
  • 6Wagstaff K, Cardie C. Clustering with instance-level constraints. In: Proc. of the 17th Int'l Conf. on Machine Learning. San Francisco: Morgan Kaufmann Publishers, 2000. 1103-1110.
  • 7Klein D, Kamvar SD, Manning CD. From instance-level constraints to space-level constraints: Making the most of prior' knowledge in data clustering. In: Sammut C, Hoffmann AG, eds. Proc. of the 19th Int'l Conf. on Machine Learning. San Francisco: Morgan Kaufmann Publishers, 2002. 307-314.
  • 8Shental N, Hertz T, Weinshall D, Pavel M. Adjustment learning and relevant component analysis. In: Shental N, Hertz T, Weinshall D, Pavel M, eds. Proc. of the 7th European Conf. on Computer Vision. London: Springer-Verlag, 2002. 776-792.
  • 9Bar-Hillel A, Hertz T, Shental N, Weinshall D. Learning a Mahalanobis metric from equivalence constraints. Journal of Machine Learning Research, 2005,6(6):937-965.
  • 10Xing EP, Ng AY, Jordan MI, Russell S. Distance metric learning, with application to clustering with Side-information. In: Becker S, Thrun S, Obermayer K, eds. Advances in Neural Information Processing Systems 15. Cambridge: MIT Press, 2003. 505-512.

共引文献47

同被引文献12

  • 1Xanthopoulos P, Pardalos PM, Trafalis TB. Linear Discriminant Analysis. Robust Data Mining. Springer New York, 2013: 27-33.
  • 2Yah S, Xu D, Zhang B, et al. Graph embedding and extensions: a general framework for dimensionality reduction. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2007, 29(1): 40-51.
  • 3Roweis S, Sau L. Nonlinear dimensionality reduction by locally linear embedding. Science, 2000, 290(22): 2323- 2326.
  • 4Lin H, Hong Y, Shu J. Some relations between the eigenvalues of adjacency, laplacian and signless laplacian matrix of a graph. Graphs and Combinatorics, 2013: 1-9.
  • 5Campbell MC, Markham J, Flores H, et al. Principal component analysis of PiB distribution in Parkinson and Alzheimer diseases. Neurology, 2013,81(6): 520-527.
  • 6Asafu-Adjei JK, Sampson AIL Sweet RA, et al. Adjusting for matching and covariates in linear discriminant analysis. Biostatistics, 2013, 14(4): 779-791.
  • 7Zhang WQ, Yang HZ. A method of multiple soft-sensors based on SLPP. Journal of East China University of Science and Technology, 2012, 38(6): 724-728.
  • 8赵东红,王来生,张峰.遗传算法的粗糙集理论在文本降维上的应用[J].计算机工程与应用,2012,48(36):125-128. 被引量:5
  • 9李正欣,张凤鸣,张晓丰,杨仕美.多元时间序列特征降维方法研究[J].小型微型计算机系统,2013,34(2):338-344. 被引量:14
  • 10张春红,胡清源,程时端.基于降维算法的分布式语义资源搜索[J].北京邮电大学学报,2013,36(2):74-78. 被引量:1

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部