期刊文献+

遗传算法中基于规则的分类器编码长度研究 被引量:2

Research on Classifier Encoding Length Based on Rule in Genetic Algorithm
下载PDF
导出
摘要 遗传学为基础的机器学习使用遗传算法作为学习机制,设计以规则为基础的分类系统,通过训练数据集来实现类别的精确描述。针对遗传算法编码没有统一标准的问题,研究基于规则的分类器个体特征编码长度与分类准确率以及效率之间的关系,通过概率逼近分析个体特征编码长度对分类准确率的影响,利用迭代步骤数的数学期望计算方法,计算遗传算法分类器的分类效率。实验结果证明,遗传算法在密西根编码条件下,个体特征编码长度越长,分类器的分类准确率越高、收敛速度越慢。 Genetic Algorithm(GA) is used as a machine learning tool for designing linguistic rule based on classification systems, accurate description of the category is category is generated by the training data set. So far there is no a uniform standard for the problem of the encoding of GA, this paper researches on the relationship between the individual characteristics coding length, the classification accuracy and the efficiency of classifier. It analyzes the effect of the coding length for classifier classification by probabilistic approximation, uses the method of getting the number of iteration steps mathematical expectation which is used to calculate the GA of classification eff'lciency. Experimental result shows that the longer encoding length is, the higher accuracy and slower convergence rate are for GA under the condition of Michigan coding.
出处 《计算机工程》 CAS CSCD 2013年第11期178-182,共5页 Computer Engineering
关键词 遗传算法 分类规则 遗传算法编码 学习分类器系统 离散数据 连续数据 Genetic Algorithm(GA) classification rule GA encoding learning classifier system discrete data continuous data
  • 相关文献

参考文献15

  • 1Aguilar R J S, Giraldez R, Riquelme J C. Natural Encoding for Evolutionary Supervised Learning[J]. IEEE Transactions on Evolutionary Computation, 2006, 11(4): 466-479.
  • 2Janez D. Statistical Comparisons of Classi?ers over Multiple Data Sets[J]. Journal of Machine Learning Research, 2006, 7: 1-30.
  • 3Sarkar B K, Sana S S. A Genetic Algorithm-based Rule Extraction System[J]. Applied Soft Computing, 2012, 12(1): 238-254.
  • 4John H H. Escaping Brittleness: The Possibilities of General- purpose Learning Algorithms Applied to Parallel Rule-based Systems[M]. Los Altos, USA: Morgan Kaufmann, 1986.
  • 5John H H. A Mathematical Framework for Studying Learning in Classifier Systems[J]. Physica D, 1986, 22(1/3): 307-317.
  • 6John H H, Judith S R. Cognitive Systems Based on Adaptive Algorithms[J]. Newsletter ACM SIGART Bulletin, 1977, (63): 49-65.
  • 7Ryan J U, Jason H M. Learning Classifier Systems: A Com- plete Introduction, Review, and Roadmap[EB/OL]. (2009- 11-13). http://www.hindawi.com/archive/2009/736398/.
  • 8Guan Sheng-Uei, Zhu Fangming. An Incremental Approach to Genetic-algorithms-based Classi?cation[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2005, 35(2): 227-239.
  • 9Cordon O, Herrera F, Villar P. Generating the Knowledge Base of a Fuzzyrule-based System by the Genetic Learning of the Data Base[J]. IEEE Transactions on Fuzzy Systems, 2001, 9(4): 667-674.
  • 10Jesus D M J, Hoffmann F, Navascues L J. Induction of Fuzzy-rule-based Classifiers with Evolutionary Boosting Algorithms[J]. IEEE Transactions on Fuzzy Systems, 2004, 12(3): 296-308.

二级参考文献1

  • 1Darrell Whitley. A genetic algorithm tutorial[J] 1994,Statistics and Computing(2):65~85

共引文献35

同被引文献11

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部