期刊文献+

基于时间结构的盲信号提取不动点算法

Fixed- Point Algorithm for Blind Signal Extraction Based on Time Structure
下载PDF
导出
摘要 为了降低具有时间结构的拟牛顿盲信号提取计算复杂度。通过每次更新后对权向量的归一化处理,利用梯度下降算法在收敛点处的性质,根据经典的Kuhn-Tucker条件提出了一种时间结构的盲信号提取不动点算法,避免了增广拉格朗日函数二阶导数的计算,并简化了一阶导数表达式,同时避免了人为选取步长参数。针对合成数据和实际的心电图数据的计算机仿真表明,提出算法具有良好的提取期望源信号的性能和更快的收敛速度。 To reduce the computional complexity of the Newton-like algorithm for blind signal extraction based on time structure, a fixed-point algorithm was presented through normalizing the weight vector and utilizing the property of the convergence point for gradient descent algorithm with classical Kuhn-Tucker condition. The proposed algorithm can avoid computing the second derivative of the augmented Lagrangian function and simplify the first derivative. The step parameter can also be avoied. Computer simulations with synthetic signals and real electrocardiogram data dem- onstrate good separation performance and better convergence of the proposed algorithm.
出处 《计算机仿真》 CSCD 北大核心 2013年第11期186-189,共4页 Computer Simulation
基金 国家自然科学基金项目(61071188) 中央高校基本科研业务费(JCB2013B11 JCB2013B10)
关键词 独立成分分析 盲信号提取 接近性量度 时间结构 不动点算法 Ndependent component analysis (ICA) Blind signal extraction(BSE) Closeness measure Time struc-ture Fixed-point algorithm
  • 相关文献

参考文献10

  • 1P Comon. Independent component analysis: a new concept? [ J]. Signal Processing, 1994,36 ( 3 ) :287-314.
  • 2A Hyva"rinen. Fast and robust fixed-point algorithms for independ- ent component analysis [ J ]. IEEE Transactions on Neural Net- works, 1999,10 ( 3 ) :626-634.
  • 3W Lu, J C Rajapakse. ICA with reference[ J]. Neurocomputing, 2006,69 ( 16 - 18 ) : 2244 -2257.
  • 4W Lu, J C Rajapakse. Approach and Applications of constrained ICA[ J]. IEEE Transactions on Neural Networks, 2005,16 ( 1 ) : 203-212.
  • 5Lin Qiu-Hua, Zheng Yong-Rui, Yin Fu-Liang, Hualou Liang, Vince D Calhoun. A fast algorithm for one-unit ICA-R[ J]. Infor- mation Sciences, 2007,177 (5) : 1265-1275.
  • 6Huang De-Shuang, Mi Jian-Xun. A new constrained independent component analysis method[ J]. IEEE Transactions on Neural Net- works, 2007,18 (5) : 1532-1535.
  • 7Li Chang-li, Liao Gui-sheng. A reference-based blind source ex- traction algorithm[ J]. Neural Computing and Applications, 2010, 19(2) :299-303.
  • 8李昌利,廖桂生,李用江.改进的参考独立分量分析算法[J].华中科技大学学报(自然科学版),2009,37(4):55-57. 被引量:5
  • 9霍政权,李宏.参考独立分量分析固定点算法[J].计算机应用研究,2011,28(1):134-136. 被引量:4
  • 10黄翔东,胡勇,刘洪涛.基于时间结构的短样本信号盲提取[J].电子学报,2012,40(3):472-476. 被引量:3

二级参考文献35

  • 1Cichochi A, Amari S. Adaptive blind signal and image processing: learning algorithms and applications [M]. New York: Wiley, 2004.
  • 2James C J, Gibson O J. Temporally constrained ICA: an application to artifact rejection in electromagnetic brain signal analysis[J]. IEEE Transactions on Biomedical Engineering, 2003, 50(9): 1 108-1 116.
  • 3Lu W, Rajapakse J C. Approach and applications of constrained ICA[J].IEEE Transactions on Neural Networks, 2005, 16(1): 203-212.
  • 4Lu W, Rajapakse J C. ICA with reference[J]. Neurocomputing, 2006, 69(16-18): 2 244-2 257.
  • 5Ille N, Berg R, Scherg M. Spatially constrained inde pendent component analysis for artifact correction in EEGand MEG[J]. Neuroirnage, 2001, 13(6):1- 159.
  • 6Huang D Sh, Mi J X. A new constrained independent component analysis method[J]. IEEE Transactions on Neural Networks, 2007, 18(5):1 532-1 535.
  • 7Lin Q H, Zheng Y R, Yin F L, et al. A fast algorithm for one-unit ICA-R[J].Information Sciences, 2007, 177(5): 1 265-1 275.
  • 8Peng C, Qian X, Ye D. Electrogastrogram extraction using independent component analysis with references [J].Neural Comput & Applic, 2007, 16(6): 581- 587.
  • 9de Moor B L R. DaiSy: Database for the identifica tion of systems[DB/OL]. [ 2008-6-25 ]. http: // homes. esat. kuleuven.be/-smc/daisy/daisydata. html.
  • 10HYVARINEN A.Independent component analysis[M].周宗潭,黄国华,徐昕,等译.北京:电子工业出版社,2007.

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部