期刊文献+

基于优化结构模型的指令最高优先级设定方法 被引量:1

Instruction Highest Priority Setting Method Based on Optimization of the Structure Model
下载PDF
导出
摘要 研究计算机结构指令的有效排序优化问题。一个计算机调度指令的实现,需要若干不同层次的指令来支持,在指令系统中,一个高优先级指令,往往和一些低优先级且成本较高的指令相关。传统的指令优先级设定方法多是将用户指令放在同一层次上进行比较设定优先级,而没有考虑指令层次性,也没有考虑对多个指令整体赋予优先级,造成指令调度结果没有达到最优。为了提高调度效率,提出了一种优化结构模型的指令最高优先级设定方法。对计算机指令的等级进行划分,从而为指令最高优先级设定提供准确的数据基础。建立优化结构模型,设定计算机指令的最高优先级,从而对计算机结构指令进行有效的排序。实验结果表明,运用改进后的算法进行计算机指令排序,能够提高指令调度效率。 The effective scheduling optimization problem of the computer instructions was researched. A computer instruction scheduling was supported by several different levels of instructions. In the instruction system, a high prior- ity instruction was relevant with some low priority and high cost instructions. Traditional instruction priority setting method didn't take the instruction level into consideration. The instructions were put on the same level for setting the priority. And the multiple instructions for setting the priority had not been taken into consideration. The instruction scheduling result was bad. In order to improve the scheduling efficiency, an optimized structure model of setting the instructions priority was proposed. The instructions were divided into different banks, so as to provide accurate data base for highest priority setting. The optimization model was established, the highest priority of computer instructions was set. The structure instructions were ordered and scheduled effectively. Simulation result shows that the improved method can improve the scheduling efficiency in the application of computer instruction scheduling.
出处 《计算机仿真》 CSCD 北大核心 2013年第11期334-337,共4页 Computer Simulation
关键词 优化结构模型 计算机指令 优先级 Optimize structure model Computer instruction Priority
  • 相关文献

参考文献8

二级参考文献48

  • 1陈晓红,秦杨.基于Web数据挖掘的高效关联规则研究[J].计算机工程与科学,2005,27(11):48-51. 被引量:9
  • 2亓旭光,梁正友.基于蚁群算法的网格资源分配与调度研究[J].广西民族学院学报(自然科学版),2006,12(2):83-86. 被引量:5
  • 3T Stutzle, M Dorigo. A short convergence proof for a class of ant colony optimization algorithms [ J ]. IEEE Transactions on Evolutionary Computation,2002,6(4) :358 -365.
  • 4L M Gambardella, M Dorigo. Solving symmet tic and asymmet2ric TSPs by ant colonies [ C ]. In:Proceedings of the IEEE Conference on Evolutionary Computation, ICEC' 96, IEEE Press, NewYork, 1996. 622 - 627.
  • 5M Dorigo, Di Caro. The ant colony optimization meta - heuristic : New ideas in optimization [ M ]. New York: McGraw - Hill, 1999. 11 - 32.
  • 6王天擎,谢军,曾洲.基于蚁群算法的网格资源调度策略研究[J].计算机工程与设计,2007,28(15):3611-3612. 被引量:8
  • 7Chakrabarti S,DomB E.Mining the Web's link structure.ComputeF,1999,32(18):60~67.
  • 8Rajkumar Buyya.Economic-based Distributed Resource Man-agementAnd Scheduling for Grid Computing[D].Mel-bourne,Australia:Monash University,April 12,2002.
  • 9DU Zhihui.Grid Computing[M].Beijing:Tsinghua Universi-ty Press,2002.
  • 10Rajkumar Buyya, DavidAbramson, Jonathan Giddy.Grid Resource Management, Scheduling,And Computational Economy [A].WGCC 2000[C].Japan,March 15-17,2000.

共引文献121

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部