期刊文献+

基于小波域奇异值分解的振动信号压缩算法 被引量:3

Vibration Signal Compression Algorithm Based on Wavelet Domain SVD
下载PDF
导出
摘要 为提高一维振动信号的数据压缩比,提出了基于小波域奇异值分解的信号压缩方法。首先,将工程采集的振动信号进行小波分解,通过补零对不同尺度的小波系数构建矩阵;然后,对小波系数矩阵进行奇异值分解,根据奇异值累积贡献度确定奇异值及其对应的左、右奇异向量,实现信号的压缩。将该方法应用于轴承故障信号,大大减少了数据量,取得了良好的效果。 In order to improve the data compression ratio of one-dimensional vibration signal,a signal compression method is proposed based on singular value decomposition in wavelet domain.Firstly,a vibration signal is sampled and decomposed by wavelet.Then a wavelet coefficient matrix is built by zero filling and analyzed by singular value decomposition.The singular values and their corresponding left and right singular value vectors are obtained according to singnlar value accumulation contribution rate,the signal compression is realized.The method is applied to bearing fault signal,and the data volume is greatly reduced and a good result is got.
出处 《轴承》 北大核心 2013年第11期51-54,共4页 Bearing
关键词 滚动轴承 小波分解 奇异值分解 数据压缩 rolling bearing wavelet decomposition singular value decomposition(SVD) data compression
  • 相关文献

参考文献6

二级参考文献48

共引文献42

同被引文献41

  • 1赵海洋,徐敏强,王金东.基于多重分形与奇异值分解的往复压缩机故障特征提取方法研究[J].振动与冲击,2013,32(23):105-109. 被引量:13
  • 2袁振民,马羽宽,何泽云.声发射技术及其应用[M].北京:机械工业出版社,1985:104-126.
  • 3陆仁书.胶合板制造学[M].2版.北京:中国林业出版社,1993.
  • 4Woo S C, Kim J T, Kim J Y, et al.Correlation of fracture processes and damage mechanisms of armor structural materials under high strain rates with acoustic emission characteristics [ J 1.International Journal of Impact Engineering,2014,63: 29-42.
  • 5Hossein H, Mehdi A, Abdolreza R ,et al.Wavelet-based acoustic emission characterization of residual strength of drilled composite materials [J].Journal of Composite Materials, 2013,47 (23) :2897-2908.
  • 6Lei Y G, Lin J, He Z J, et al. A review on empirical mode decomposition in fault diagnosis of rotating machinery [ J ]. Mechanical Systems and Signal Processing,2013,35(1-2) :108-126.
  • 7蒋正新,施国梁.矩阵理论及应用[M].北京:北京航空学院出版社,1988:87-95.
  • 8Luo B, Hancock E R. Structural graph matching using the EM algorithm and singular value decomposition [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence ,2001,23(10) :1120-1136.
  • 9Huang N E, Shen Z, Long S R.The empirical mode decomposition and the Hilbert spectrum for nonlinear and non- stationary time series analysis[ J] .Proceeding of the Rogal Social A : Mathematical,Physical & Engineering, 1998,454: 903 -995.
  • 10Huang N E, Shen Z, Long S R. A new view of non-linear water waves: The Hilbert speetrum[ J ].Annual Review of Fluid Mechanics, 1999,31 ( 3 ) : 417-457.

引证文献3

二级引证文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部