期刊文献+

面向分组类别概率问题的模糊SVM分类算法

A Fuzzy SVM Classification Algorithm from Group Probabilities Problem
下载PDF
导出
摘要 分组类别概率问题(Q-GP)给定样本的群组统计信息或类别概率分布,寻求每个个体样本的实际类标签,有着广泛的实际应用,但目前相应的研究仍较少。Q-GP问题求解的关键是如何利用已知的样本群组信息来获取单个样本的分类信息。文中通过比较二分类Q-GP问题与有监督及半监督二分类问题的异同,提出利用模糊分类的思想,根据已知的各群组类别概率分布近似获取个体样本的类隶属度,以此构造有监督样本进行学习。具体方法是:首先使用fuzzy层次分类构造各群组的等价类,并利用等价类将二分类Q-GP问题变换成多个带模糊隶属度的有监督二分类子问题;然后实施fuzzy SVM训练子分类器;最后整合多个子分类器的结果即得到每个样本的类标签估计。 The problem of estimation from group probabilities (Q-GP) is to find the actual labels of the individual samples given the label proportions in each group,which has a wide application,but lacking of the existing study. The Q-GP solution is critical to use the known information of group probabilities to obtain the classification information for single sample. In this paper, present a fuzzy classifica- tion method based on fuzzy support vector machine (SVM) to solve this problem by comparing the binary Q-GP with the supervised and semi-supervised binary classification in difference. Firstly, introduce the fuzzy hierarchical classification to find the relationships between objects in a group,so as to decompose the binary Q-GP into supervised sub-problems with fuzzy memberships. Then A fuzzy SVM is trained for each sub-problem. At last combine multiple sub-classifiers to get the final labels of all individual samples.
出处 《计算机技术与发展》 2013年第11期46-49,共4页 Computer Technology and Development
基金 国家自然科学基金资助项目(61273295)
关键词 分组类别概率 fuzzy层次分类 FUZZY SVM group probabilities fuzzy hierarchical classification fuzzy SVM
  • 相关文献

参考文献15

  • 1Vapnik V. Statistical learning theory [ M ]. Chichester: Wiley, 1998.
  • 2Kueck H, de Freitas N. Learning about individuals from group statistics [ C ]//Proc of UAI. Arlington, Virginia : AUAI Press, 2005:332-339.
  • 3Quadrianto N, Smola A J, Caetano T S, et al. Estimating labels from label proportions [ J ]. Journal of machine learning re- search ,2009,10:2349-2374.
  • 4Stefan R. SVM classifier estimation from group probabilities [ C]//Proceedings of the 27th international conference on ma- chine learning. Haifa, Israel : [ s. n. ] ,2010.
  • 5Chen B, Chen L, Ramakrishnan R, et al. Learning from aggre- gate views[ C]//Proceedings of the 22nd international confer- ence on data engineering. [ s. 1. ] : [ s. n. ] ,2006:3-12.
  • 6Dietterich T G, Lathrop R H, Lozano- Perez T. Solving the multiple instance learning with axis-parallel rectangles [ J ]. Artificial intelligence, 1997,89 ( 1/2 ) :31-71.
  • 7Musicant D, Christensen J, Olson J. Supervised learning by training on aggregate outputs [ C ]//Proc of 7th IEEE interna- tional conference on data mining. Omaha, NE : [ s. n. ], 2007 : 252-261.
  • 8Platt J. Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods [ M ]//Ad- vances in large margin classifiers. [ s. 1. ] :MIT Press, 1999.
  • 9Lin C F, Wang S D. Training algorithms for fuzzy support vec- tor machines with noisy data [ J ]. Pattern recognition letters, 2004,25 (14) : 1647-1656.
  • 10杨晓伟,闫丽.基于模糊分割的支持向量机分类器[J].计算机工程与应用,2007,43(28):187-189. 被引量:3

二级参考文献32

  • 1张炤,张素,章琛曦,陈亚珠.基于支持向量机的概率密度估计方法[J].系统仿真学报,2005,17(10):2355-2357. 被引量:24
  • 2BURGES C. A tutorial on support vector machines for pattern rec-ognition[ J]. Data Mining and Knowledge Discovery, 1998, 2 (2) : 121 - 167.
  • 3KAUFMAN L. Solving the quadratic programming problem arising [ C ]// SCHOLKOPF B, BURGES C J C, SMOLA A J. Advances in Kernel-Methods : support vector learning. Cambridge : MIT Press, 1999:169-184.
  • 4KEERTHI S S, SHEVADE S K, BHATrACHARYYA C, et al. Improvements to Platt's SMO algorithm for SVM classifer Design [ J ]. Neural Computation, 2001,13 ( 3 ) :637 - 649.
  • 5林大瀛.基于分组聚类的SVM学习算法[D].广州:华南理工大学数学学院,2003.
  • 6LYHYAOUI A, MARTINEZ M, MORA I,et al. Sample selection via clustering to construct support vector-like classifiers[J]. IEEE Transactions on Neural Networks, 1999,10 ( 6 ) : 1474 - 1481.
  • 7BEZDEK J C. Pattern recognition with fuzzy objective function algorithm[ M]. New York: Plenum Press, 1981.
  • 8MUNRO P W. Repeat until bored : a pattern selection strategy[ C ] // MOODY J E, HANSON S J, LIPPMANN R P. Advances in Neural Information Processing Systems 4. San Mateo: Morgan Kaufmann Publisher, 1992: 1001- 1008.
  • 9KOHONEN T. The self-organizing map[ J ]. Proceedings of IEEE, 1990, 78(9) : 1464-1480.
  • 10MURPHY P M, AHA D W. UCI repository of machine learning database[ DB/OL]. [2010 -04 - 10] http: Jjwww. ics. uci. edu/ mlearrt/MLRepository, html.

共引文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部