期刊文献+

基于自调节粒子群算法的盲检测

Blind Detection Based on Self-adaptive Particle Swarm Optimization
下载PDF
导出
摘要 以往基于粒子群优化的盲算法能成功实现信号盲检测,但具有算法收敛速度慢、容易陷入局部最小的缺点。文中通过分析粒子群算法的机能及参数的设置,提出一种改进的基于自调节粒子群优化的盲检测算法。算法构成思想是:基于MIMO系统的盲检测系统模型将盲检测问题转化为二次优化问题,利用改进的自调节粒子群优化算法对此优化问题进行寻优。仿真表明,改进算法具有全局收敛性好、收敛速度快、误码率低的优点,能够更好地解决盲检测问题。 The blind algorithm based on Particle Swarm Optimization (PSO) can achieve signal blind detection successfully,but has some defects such as converging to local optimum or slow convergence. By analyzing the performance of the PSO algorithm and the parameter setting,an improved blind algorithm based on self-adjustment PSO algorithm is presented. The thoughts are through blind detection system model based on MIMO system, translated the blind detection problem into quadratic optimization problem, and the new PSO algorithm was used to solve the problem. The experiment results show that the new PSO has good features such as strong global search capability ,rapid convergence and short computation time, which confirms the validity and feasibility of this approach.
出处 《计算机技术与发展》 2013年第11期59-61,65,共4页 Computer Technology and Development
基金 国家自然科学基金资助项目(60772060) 南京邮电大学引进人才项目(NY212022) 南京邮电大学青蓝工程项目(NY210037)
关键词 盲检测 自调节因子 粒子群算法 blind detection self-adjustment factor PSO
  • 相关文献

参考文献8

  • 1Tong L, Perreau S. Multicharmel blind identification: from subspace to maximum likelihood methods[ J]. Proc of IEEE, 1998,86(10) : 1951-1968.
  • 2Shen Junqiang, Ding Zhi. Zero-forcing blind equalization based on subspace estimation for multiuser systems[ J]. IEEE transactions on communications ,2001,49 ( 2 ) : 262 -271.
  • 3于舒娟,张志涌.含公零点SIMO信道QPSK序列盲检测[J].东南大学学报(自然科学版),2005,35(6):867-871. 被引量:7
  • 4Kennedy J ,Eberhart R C. Particle swarm optiraizationL C J// Proceedings of IEEE international conference on neural net-works. Perth,Australia: [ s. n. ] ,1995.
  • 5纪震,廖惠连,吴青华.粒子群算法及应用[M].北京.科学出版社,2008:12-15.
  • 6Jiao B, Lian Z, Gu X. A dynamic inertia weight particle swarm optimization algorithm [ J ]. Chaos, solitons and frac- tals,2008,37(3) :698-705.
  • 7Poli R, Kennedy J, BlackweU T. Particle swarm optimization -an overview[J]. Swarm intelligence,2007,1 (1) :33-57.
  • 8Hashemi A B. A note on the learning automata based algo- rithms for adaptive parameter selection in PSO [ J ]. Applied soft computing journal,2011,11 ( 1 ) :689-705.

二级参考文献10

  • 1Giannakis G B Hua Y B Stoica P.Signal processing advance in wireless and mobile communications,volumel :trends in channel estimation and equalization[M].北京:人民邮电出版社,2002.179-209.
  • 2Tong L, Xu G, Kailath T. Blind channel identification and equalization using second-order statistics: a time-domain approach[J]. IEEE Trans Inform Theory, 1994, 40(3) :340-349.
  • 3Moulines E, Duhamel P, Cardoso J-F, et al. Subspace methods for the blind identification of multichannel FIR filters[J]. IEEE Trans Signal Processing, 1995, 43(2) :516 - 525.
  • 4Ding Z, Qiu L. Blind MIMO channel identification from second order statistics using rank deficient channel convolution matrix[J]. IEEE Trans Signal Processing, 2003, 51 (2) :535 - 545.
  • 5Ding Z. Matrix outer-product decomposition method for blind multiple channel identification [J]. IEEE Trans on Signal Processing, 1997, 45(12) :3045 - 3061.
  • 6Ding Z, Li Y. Blind equalization and identification [M]. New York: Marcel Dekker, 2000. 175-202.
  • 7Li Q-Y, Bai E-W, Ding Z. Blind source separation of signals with known alphabets using e-approximation algorithms[J]. IEEE Trans Signal Processing, 2003, 51 (1) :1 - 10.
  • 8Li Q-Y, Bai E-W, Ye Y Y. Channel equalization and ε-approximation algorithm [J]. IEEE Trans Signal Processing, 2001,49(11) :2823 -2831.
  • 9Li X-H, Fan H. Linear predication methods for blind fractionally spaced equalization [J]. IEEE Trans Signal Processing, 2000,48(6) :1667 - 1675.
  • 10Abed-Meraim K, Loubaton P. A subspace algorithm for certain blind identification problems [J]. IEEE Trans Signal Processing, 1997, 43(2):499-511.

共引文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部