期刊文献+

混合智能优化频率指配算法 被引量:3

Frequency assignment algorithm based on hybrid intelligent optimization method
下载PDF
导出
摘要 在模拟退火算法的基础上,引入禁忌搜索的记忆功能,提出了一种基于混合智能优化的频率指配算法,仿真分析了该混合算法各参数对算法性能的影响,并将禁忌搜索、模拟退火两种算法单独应用时的性能和该混合算法的性能进行了对比.结果表明,该混合算法收敛快,稳定性好,解的质量高,能有效改善搜索效率和精度,为解决大规模复杂网系的频率指配问题进行了有益的探索. A hybrid intelligent optimization frequency assignment algorithm is pres- ented based on the simulated annealing algorithm, and the memory function of tabu search is introduced simultaneously. An analysis on the influence of the parameters on the performance of the hybrid algorithm is made, and the performances of tabu search, simulated annealing and the hybrid algorithm are compared in the simula- tion. Results show that the hybrid algorithm converges quickly and robustly, and its solutions quality is higher, and could improve the search efficiency and precision efficaciously. It is beneficial to solve the frequency assignment problem of large scale network.
出处 《电波科学学报》 EI CSCD 北大核心 2013年第5期947-952,961,共7页 Chinese Journal of Radio Science
基金 CEMEE国家实验室开放课题基金项目资助(CEMEE2012K0106B CEMEE2012K0107B CEMEE2014K010A)
关键词 频率指配 模拟退火 禁忌搜索 frequency assign simulated annealing tabu search.
  • 相关文献

参考文献15

  • 1DUNKIN N, ALLEN S. Frequency Assignment Prob- lems= Representations and Solutions [R]. London: Royal Holloway, University of London, 1997.
  • 2SMITH D H, ALI.EN S M, HRULEY S, et al. Fre- quency Assignment= Methods and Algorithms [ R/ OL]. 1999[2012-10 27]. ftp://ftp, rta. nato. int/pub- [ulltext/RTO/MP/RTO-MP-013/SMP-013- SK. pdf.
  • 3GLOVER F. Tabu search: part I[J]. ORSA Journal on Computing, 1989, 1(3): 190-206.
  • 4GLOVER F. Tabu search., part II[J]. ORSA Journal on Computing, 1990, 2(1): 4 -32.
  • 5KIRKPATRICK S, GELATT Jr C D, VECCHI M P. Optirnazation by simulated annealing [J]. Science, 1983, 220(4598) : 671-680.
  • 6METROPOLIS N, ROSENBLUTH A, ROSEN- BLUTH M, et al. Equation of state calculations by fast computing machines [J]. Journal of Chemical Physics, 1953, 2: 1087-1092.
  • 7HOLLAND J H. Adaptation in Natural and Artificifal System [M]. Cambridge: University of Michigan Press, 1975.
  • 8RUDOLPH G. Convergence analysis of canonical ge netic algorithms [J]. IEEE Transactions on Neural Networks, 1994, 5(1): 96-101.
  • 9DORIGO M. Optimization, Learning and Natural A1- gorithms[D]. Milano= Politecnico di Milano, 1992.
  • 10KENNEDY J, EBERHART R. A new optimizer u- sing particle swarm theory [ C]// 6th International Symposium on Micromachine and Human Science. Nagoya, October 4-6, 1995: 39-43.

同被引文献38

  • 1U. S Department of Defense, Net-Centric Spectrum Man- agement Strategy, August 3,2006.
  • 2U. S Department of Defense, Joint Spectrum Vision 2010, Washington, DC K.
  • 3I. Aardal,S. P. M. van Hoesel, A. M. C. A. Koster, C. Mannino, and A. Sassano. Models and solution tech- niques for frequency assignment problems [ J ]. Quarterly Journal of the Belgian, French and Italian Operations Re- search Societies (4OR), 2003.
  • 4Glover F. Tabu search: part I . ORSA Journal on Com- puting, 1989, 1:190-206.
  • 5Glover F. Tabu search: part II . ORSA Journal on Com- puting, 1990, 2:4-32.
  • 6Hao, J. -K. , & Perrier, L. Tabu search for the frequency assignment problem in cellular radio networks. Technical Report LGI2P, EMA-EERIE, Parc Scientifique Georges Besse, Nimes,France. 1999.
  • 7Smith D H, Allen S M, Hruley S, et al. Frequency As- signment: Methods and Algorithms[R]. 1999, 11.
  • 8王强,高斌,贾翠霞.基于四级预测模型的完全图算法[J].中国电子科学研究院学报,2008,3(6):623-626. 被引量:5
  • 9王强,沙斐,王国栋.解决频率指配问题的蚁群算法[J].电波科学学报,2009,24(5):904-908. 被引量:3
  • 10徐奇,熊晖,李钊,陈大勇.一种针对频率分配问题的改进ANTS算法[J].无线电工程,2010,40(1):58-61. 被引量:2

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部