期刊文献+

基于红外视频的车载行人车辆检测系统 被引量:1

Traffic Detection System Based on Infrared Video Analysis
下载PDF
导出
摘要 该文提出一种基于红外视频的车载行人车辆检测系统模型。利用混合高斯模型对梯形感兴趣区域提取前景,再根据前景进行目标的框定,对目标进行几何形状、灰度分布、运动速度、边缘梯度分布4类特征提取特征数据,并把特征数据代入事先用特征数据库训练好的神经网络对目标进行分类检测,以达到对行人车辆的检测判别并预警的效果。仿真结果表明,该检测系统算法运行速度快,虚警率低,可靠性强。 A model of traffic detection system is presented in this paper. Firstly, achieve the foreground extraction within the region of interest(ROI) based on Gaussian mixture model( GMM), and make a presumption of valid target according to the foreground. Then extract the characteristic values of the valid target on the basis of its geometrical shape, gray-scale distribution, movement speed, edge gradient distribution. And detect these values by putting the characteristics date into the well-trained BP neutral network, so that thedetection, discrimination and warning of the traffic can be realized.
出处 《杭州电子科技大学学报(自然科学版)》 2013年第5期106-109,共4页 Journal of Hangzhou Dianzi University:Natural Sciences
基金 国家级大学生创新训练资助项目(GJ201210336014)
关键词 梯形感兴趣区域 混合高斯模型 图像特征值 神经网络 region of interest Gaussian mixture model image feature extraction neural network
  • 相关文献

参考文献3

二级参考文献10

  • 1潘锋,王宣银.基于支持向量机的复杂背景下的人体检测[J].中国图象图形学报(A辑),2005,10(2):181-186. 被引量:16
  • 2宋锦萍,职占江.图像分割方法研究[J].现代电子技术,2006,29(6):59-61. 被引量:10
  • 3穆文全,廖晓峰,虞厥邦.基于遗传算法和BP算法的多层感知机杂交训练算法[J].电子科学学刊,1997,19(2):190-194. 被引量:15
  • 4Schauland S, Park S B, Zhang Yan. Vision-based Pedestrian Detection Improvement and Verification of Feature Extraction Methods and SVM-based Classification[C]//Proc. of IEEE Intelligent Transportation Systems Conference. [S. l.]: IEEE Press, 2006: 97-102.
  • 5Dalai N. Finding People in Images and Videos[D]. Grenoble, France: The French National Institute for Research in Computer Science and Control, 2006.
  • 6Yuan C, Niemann H. Neural Networks for Appearance- based 3 -D Object Recognition[J]. Neuro Computing,2003, 51:249 - 264.
  • 7Miller M I. Conditional Mean Estimation via Jump - diffusion Processes in Ultiple Target Tracking/Recognition[J] IEEE Transactions on Signal Processing, 1995,43(11): 2 678-2 690.
  • 8Raffaele Parisi. A Generalized l.earning Paradigm Exploiting the Structure of Feedforward Neural Networks [J]. IEEE Transactions on Neural Networks, 1996, 7 (fi) : 1 450 - 1 459.
  • 9Hu Xiao, Guo Anehen. Efficient Back- propagetion Learning Using Optimal Learning Rate and Momentum[J]. Neural Networks, 1997,10(3) : 517 - 527.
  • 10John J, Mckeown. Some Numerical Aspects of the Training Networks[J]. Proceedings IEEE, 1996,84(10):1 562 - 1 568.

共引文献37

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部