期刊文献+

基于改进的EKF法估计电动汽车电池SOC 被引量:4

Estimation of SOC based on improved EKF method for electric vehicle batteries
下载PDF
导出
摘要 基于传统卡尔曼滤波算法的电池组荷电状态(state of charge,SOC)估计方法适合于电流变化比较剧烈的电动汽车动力电池SOC估计,但由于电池模型以及系统噪声、量测噪声统计特性的不确定性,容易引起滤波发散。在研究与分析极化效应、库仑效率、内阻、温度、老化等对电池可用容量的影响实验的基础上,对扩展的卡尔曼滤波(expended kalman filter,EKF)算法进行改进。实验结果表明:改进后的EKF方法对随机的量测噪声具有较强的抑制能力,提高了估算精度,更适用于实际应用。 The state of charge(SOC) estimation of battery pack based on traditional Kalman filter method is suitable for estimating the SOC of electric vehicle batteries where the current fluctuates drastically. However, the uncertainty due to battery model and statistical information of the system and measurement noise will result in filtering divergence. Based on the analysis of factors affecting the SOC such as polarization effect, coulombic efficiency, internal resistance, temperature and ageing, the expended Kalman filter method was improved. Accordingly, the accuracy of the estimate system was improved. Matlab simulation and experiments were carried out. The comparison indicates that the improved EKF method performs well when disturbance happens.
出处 《电源技术》 CAS CSCD 北大核心 2013年第11期2003-2006,共4页 Chinese Journal of Power Sources
基金 湖南省科技厅工业支撑计划项目(2011GK3125)
关键词 电动汽车 荷电状态 EKF法 electric vehicle state of charge EKF method
  • 相关文献

参考文献11

二级参考文献61

共引文献396

同被引文献47

  • 1沈晔青,龚华军,熊琰.自适应卡尔曼滤波在目标跟踪系统中的应用[J].计算机仿真,2007,24(11):210-213. 被引量:13
  • 2Hu Y,Wu X, Tu J, et al. Research of Power Battery Management System in Electric Vehicle [J].International Journal of Multimedia and Ubiquitous Engineering, 2015, 10(2) : 187-194.
  • 3Wilmes B. Toward a tool for search-based testing of Simulink/ TargetLink models[ C]//4 th Symposium on Search Based-Software Engineering. 2012 : 49.
  • 4Man K L, Wan K, Ting T O, et al. Towards a hybrid approach to SOC estimation for a smart battery management system (BMS) and battery supported cyber-physical systems (CPS) [ C ]//Future Intemet Communications (BCFIC), 2012 2nd Baltic Congress on. 1EEE, 2012: 113-116.
  • 5Rong Y, Yang W, Wang H, et al. SOC estimation of electric vehicle based on the establishment of battery management system [ C ]//Transportation Electrification Asia-Pacific (ITEC Asia- Pacific), 2014 IEEE Conference and Expo. IEEE, 2014: 1-5.
  • 6王吉松.基于EKF的混合动力汽车用锂电池SOC估算算法研究[D].北京:北京交通大学,2011.
  • 7BABA A, ADACHI S. State of charge estimation of HEV/EV battery with series kahnan filter [ C ]. SICE Annual Conference, Akita, Japan, 2012, Page (s): 845 -850.
  • 8HEZHW, LIUYY, GAO MY, et al. A joint model and SoC estimation method for lithium battery based on the sigma point KF[ C]. ITEC, 2012:1-5.
  • 9RAHIMI-EICHI H, BARONTI F, CHOW M Y. Online adaptive parameter identifi cation and state-of-charge coestimation for Lithium-polymer battery cells [ J ]. IEEE Transactions on Industrial Electronics, 2014, 61(4) : 2053-2061.
  • 10RAHIMI-EICHI H, CHOW M Y. Adaptive parameter i- dentification and state-of-charge estimation of lithium- ion batteries [ C ]. Proceedings of 38th Annu. Conf. IEEE Ind. Electron. Soc., Montreal, QC, Canada, 2012 : 4012-4017.

引证文献4

二级引证文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部